Q.1: Solve the initial value problem $(x+1)\frac{dy}{dx} + y = \ln(x), \ y(1) = 10.$ **Sol.** We can write the given equation as $\frac{d}{dx}[(x+1)y] = \ln(x)$ Which $\Rightarrow (x+1)y = \int \ln(x)dx + c, \Rightarrow (x+1)y = x\ln(x) - x + c \text{ or } y = \frac{x\ln(x) - x + c}{x+1}$

$$y(1) = 10 \Rightarrow 10 = \frac{0 - 1 + c}{2} \Rightarrow c = 21 \text{ and the solution is } y = \frac{x \ln(x) - x + 21}{x + 1}.$$

Q.2: Solve the differential equation $(2y^2 + 3x)dx + 2xydy = 0$ by making it exact.

Sol. $M(x,y) = 2y^2 + 3x$ and N(x,y) = 2xy. $\frac{\partial M}{\partial y} = 4y$ and $\frac{\partial N}{\partial x} = 2y$. So the equation is not exact.

$$\frac{M_y - N_x}{N} = \frac{4y - 2y}{2xy} = \frac{1}{x}$$
 is a function of x alone.
$$\mu(x) = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$
 is the integrating factor.

Multiplying by integration factor, we get $(2xy^2 + 3x^2)dx + 2x^2ydy = 0$

 $\overline{M}(x,y) = 2xy^2 + 3x^2$ and $\overline{N}(x,y) = 2x^2y$. $\frac{\partial \overline{M}}{\partial y} = 4xy$ and $\frac{\partial \overline{N}}{\partial x} = 4xy$. So the equation is exact.

There exists a function f(x, y) such that $\frac{\partial f}{\partial x} = \overline{M}$ and $\frac{\partial f}{\partial y} = \overline{N}$ $\frac{\partial f}{\partial x} = \overline{M} = 2xy^2 + 3x^2, \Rightarrow f(x, y) = x^2y^2 + x^3 + g(y)$ $\frac{\partial f}{\partial y} = 2x^2y + g'(y) = \overline{N} = 2x^2y \Rightarrow g'(y) = 0 \Rightarrow g(y) = c$ So $f(x, y) = x^2y^2 + x^3 + c$

Q.3: (a.) Use appropriate substitution to transform $(x^2 + y^2)dx + (x^2 - xy)dy = 0$ into a separable equation. Do not solve the new equation.

Sol. Given equation is a homogeneous equation of degree 2. Let
$$y = ux$$
, then $dy = udx + xdu$
 $(x^2 + y^2)dx + (x^2 - xy)dy = 0 \Rightarrow (x^2 + u^2x^2)dx + (x^2 - ux^2)(udx + xdu) = 0$
 $x^2dx + u^2x^2dx + x^2udx - u^2x^2dx + x^3du - ux^3du = 0 \Rightarrow x^2(1+u)dx + x^3(1-u)du = 0$
 $x^2(1+u)dx + x^3(1-u)du = 0 \Rightarrow x^2(1+u)dx = -x^3(1-u)du \Rightarrow \frac{1}{x}dx = \frac{u-1}{u+1}du$
Which is a separable equation.

(A)

(b.) Use appropriate substitution to transform $x\frac{dy}{dx} + y = x^2y^2$ into a linear equation. Do not

solve the new equation.

Sol. $x\frac{dy}{dx} + y = x^2y^2 \Rightarrow \frac{dy}{dx} + \frac{y}{x} = xy^2$ which is a Bernoulli equation with n = 2. Let $u = y^{1-2} = y^{-1}$ or $y = u^{-1}$ and $\frac{dy}{dx} = -u^{-2}\frac{du}{dx}$ So $\frac{dy}{dx} + \frac{y}{x} = xy^2 \Rightarrow -u^{-2}\frac{du}{dx} + \frac{u^{-1}}{x} = xu^{-2}$ Multiplying by $-u^2$ we get $\frac{du}{dx} - \frac{u}{x} = -x$ which is a linear equation.