Q.1: Solve the initial value problem $(x+1) \frac{d y}{d x}+y=\ln (x), y(1)=10$.

Sol. We can write the given equation as $\frac{d}{d x}[(x+1) y]=\ln (x)$
Which $\Rightarrow(x+1) y=\int \ln (x) d x+c, \Rightarrow(x+1) y=x \ln (x)-x+c$ or $y=\frac{x \ln (x)-x+c}{x+1}$ $y(1)=10 \Rightarrow 10=\frac{0-1+c}{2} \Rightarrow c=21$ and the solution is $y=\frac{x \ln (x)-x+21}{x+1}$.
Q.2: Solve the differential equation $\left(2 y^{2}+3 x\right) d x+2 x y d y=0$ by making it exact.

Sol. $M(x, y)=2 y^{2}+3 x$ and $N(x, y)=2 x y \cdot \frac{\partial M}{\partial y}=4 y$ and $\frac{\partial N}{\partial x}=2 y$. So the equation is not exact.
$\frac{M_{y}-N_{x}}{N}=\frac{4 y-2 y}{2 x y}=\frac{1}{x}$ is a function of x alone.
$\mu(x)=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$ is the integrating factor.
Multiplying by integration factor, we get $\left(2 x y^{2}+3 x^{2}\right) d x+2 x^{2} y d y=0$
$\bar{M}(x, y)=2 x y^{2}+3 x^{2}$ and $\bar{N}(x, y)=2 x^{2} y \cdot \frac{\partial \bar{M}}{\partial y}=4 x y$ and $\frac{\partial \bar{N}}{\partial x}=4 x y$. So the equation is exact.

There exists a function $f(x, y)$ such that $\frac{\partial f}{\partial x}=\bar{M}$ and $\frac{\partial f}{\partial y}=\bar{N}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\bar{M}=2 x y^{2}+3 x^{2}, \Rightarrow f(x, y)=x^{2} y^{2}+x^{3}+g(y) \\
& \frac{\partial f}{\partial y}=2 x^{2} y+g^{\prime}(y)=\bar{N}=2 x^{2} y \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c
\end{aligned}
$$

So $f(x, y)=x^{2} y^{2}+x^{3}+c$
Q.3: (a.) Use appropriate substitution to transform $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$ into a separable equation. Do not solve the new equation.

Sol. Given equation is a homogeneous equation of degree 2. Let $y=u x$, then $d y=u d x+x d u$

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0 \Rightarrow\left(x^{2}+u^{2} x^{2}\right) d x+\left(x^{2}-u x^{2}\right)(u d x+x d u)=0 \\
& x^{2} d x+u^{2} x^{2} d x+x^{2} u d x-u^{2} x^{2} d x+x^{3} d u-u x^{3} d u=0 \Rightarrow x^{2}(1+u) d x+x^{3}(1-u) d u=0 \\
& x^{2}(1+u) d x+x^{3}(1-u) d u=0 \Rightarrow x^{2}(1+u) d x=-x^{3}(1-u) d u \Rightarrow \frac{1}{x} d x=\frac{u-1}{u+1} d u
\end{aligned}
$$

Which is a separable equation.
(b.) Use appropriate substitution to transform $x \frac{d y}{d x}+y=x^{2} y^{2}$ into a linear equation. Do not solve the new equation.
Sol. $x \frac{d y}{d x}+y=x^{2} y^{2} \Rightarrow \frac{d y}{d x}+\frac{y}{x}=x y^{2}$ which is a Bernoulli equation with $n=2$.
Let $u=y^{1-2}=y^{-1}$ or $y=u^{-1}$ and $\frac{d y}{d x}=-u^{-2} \frac{d u}{d x}$
So $\frac{d y}{d x}+\frac{y}{x}=x y^{2} \Rightarrow-u^{-2} \frac{d u}{d x}+\frac{u^{-1}}{x}=x u^{-2}$
Multiplying by $-u^{2}$ we get $\frac{d u}{d x}-\frac{u}{x}=-x$ which is a linear equation.

