King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 202 Major Exam I The First Semester of 2009-2010 (091)

<u>Time Allowed</u>: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		6
2		10
3		10
4		10
5		10
6		10
7		10
Total		66

Q:1 (a) (3 points) Show that $y = c_1 e^x + c_2 e^{-x}$ is a two paremeter family of solutions of

$$y'' - y = 0.$$

Sol.
$$y = c_1 e^x + c_2 e^{-x}$$
, $y' = c_1 e^x - c_2 e^{-x}$, and $y'' = c_1 e^x + c_2 e^{-x}$
 $y'' - y = c_1 e^x + c_2 e^{-x} - c_1 e^x - c_2 e^{-x} = 0$

(b) (3 points) Find a member of this family that satisfy: y(1) = 0 and y'(1) = e.

Sol.
$$y(1) = 0 \Rightarrow c_1 e + c_2 e^{-1} = 0$$
 (1)

$$y'(1) = e \Rightarrow c_1 e - c_2 e^{-1} = e$$
(2)
(1) + (2) $\Rightarrow 2c_1 e = e \Rightarrow c_1 = \frac{1}{2}$
(1) - (2) $\Rightarrow 2c_2 e^{-1} = -e \Rightarrow c_2 = -\frac{e^2}{2}$
 $y = \frac{1}{2}e^x - \frac{e^2}{2}e^{-x} = \frac{e^x - e^{-x+2}}{2}.$

Q:2 (10 points) Solve the differential equation

Sol.

$$\frac{dy}{dx} = \frac{2xy + y - 2x - 1}{3xy - y + 3x - 1}$$
$$\frac{dy}{dx} = \frac{(2x+1)(y-1)}{(3x-1)(y+1)} \Rightarrow \frac{y+1}{y-1}dy = \frac{2x+1}{3x-1}dx$$
$$\left(1 + \frac{2}{y-1}\right)dy = \left(\frac{2}{3} + \frac{5}{3x-1}\right)dx$$
$$y + 2\ln|y-1| = \frac{2}{3}x + \frac{5}{9}\ln|3x-1| + C_1$$
$$\ln(y-1)^2 - \ln(3x-1)^{\frac{5}{9}} = \frac{2}{3}x - y + C_1$$
$$\ln\left(\frac{(y-1)^2}{(3x-1)^{\frac{5}{9}}}\right) = \frac{2}{3}x - y + C_1$$
$$\frac{(y-1)^2}{(3x-1)^{\frac{5}{9}}} = e^{\frac{2}{3}x-y+C_1} = Ce^{\frac{2}{3}x-y}$$

Q:3 (10 points) Solve the IVP

$$(x+1)\frac{dy}{dx} + (x+2)y = 2xe^{-x}, \qquad y(0) = 1$$

Sol. $\frac{dy}{dx} + \frac{x+2}{x+1}y = \frac{2xe^{-x}}{x+1}$ (*) $P(x) = \frac{x+2}{x+1} = 1 + \frac{1}{x+1}$ and $IF = e^{\int \left(1 + \frac{1}{x+1}\right)dx} = e^{x + \ln(x+1)} = (x+1)e^x$ Multiplying both sides of (*) by *IF* we get $\frac{d}{dx}((x+1)e^xy) = 2x$ $(x+1)e^{x}y = x^{2} + C$ $y(0) = 1 \Rightarrow C = 1$ and the solution is $y = \frac{(x^2 + 1)e^{-x}}{r+1}$.

Q:4 Given the following differential equation

$$8xy^2 dx + (12x^2y + 40y^2 - 2) dy = 0.$$

(a) (2 points) Determine if the differential equation is EXACT or not.

Sol.
$$M(x, y) = 8xy^2$$
, $N(x, y) = 12x^2y + 40y^2 - 2$
 $M_y = 16xy$, and $N_x = 24xy$.

Since $M_y \neq N_x$, therefore the give DE is not EXACT.

(b) (4 points) Express the given differential equation as an exact equation by multiplying with an appropriate Integrating Factor.

Sol.
$$\frac{N_x - M_y}{M} = \frac{24xy - 16xy}{8xy^2} = \frac{8xy}{8xy^2} = \frac{1}{y}.$$

 $\mu(x, y) = e^{\int \frac{1}{y} dy} = e^{\ln y} = y$

Multiplying by $\mu(x, y)$, we get the exact equation

$$8xy^3 dx + \left(12x^2y^2 + 40y^3 - 2y\right)dy = 0.$$

(c) (4 points) Solve the exact differential equation obtained in (b).

Sol.
$$\frac{\partial f}{\partial x} = M(x, y) = 8xy^3$$
 and by integrating we get $f(x, y) = 4x^2y^3 + g(y)$
Now $\frac{\partial f}{\partial y} = 12x^2y^2 + g'(y) = N(x, y) = 12x^2y^2 + 40y^3 - 2y$
 $\Rightarrow g'(y) = 40y^3 - 2y \Rightarrow g(y) = 10y^4 - y^2 + C$

The one parameter family of solutions is $4x^2y^3 + 10y^4 - y^2 + C = 0$.

Q:5 (a) (5 points) Find a suitable substitution that transforms the differential equation

$$\left(\sin x - y^2 \cos x\right) dx + \frac{1}{y} dy = 0.$$

into a **LINEAR** differential equation. Find the new linear equation **but do not** solve it.

Sol. Given equation can be written as $\frac{dy}{dx} + (\sin x)y = \cos x y^3$ which is a Bernoulli'e equation. with n = 3.

Let
$$u = y^{1-3} = y^{-2}$$
 or $y = u^{-\frac{1}{2}}$ and $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = -\frac{1}{2}u^{-\frac{3}{2}}\frac{du}{dx}$.

$$-\frac{1}{2}u^{-\frac{3}{2}}\frac{du}{dx} + (\sin x)\,u^{-\frac{1}{2}} = (\cos x)\,u^{-\frac{3}{2}}$$

$$\frac{du}{dx} - (2\sin x)u = -2\cos x$$
 which is a LINEAR equation.

(b) (5 points) Find a suitable substitution that transforms the differential equation

$$(2x^2 + 3xy) \, dx + 5y^2 \, dy = 0$$

into a SEPARABLE differential equation. Find the new separable equation **but do not** solve it.

Sol. $M(x,y) = 2x^2 + 3xy$ and $N(x,y) = 5y^2$ are homogeneous functions of degree 2 and therefore the given equation is also homogeneous.

Put y = ux and dy = udx + xdu is the given equation

$$(2x^2 + 3x^2u) dx + 5x^2u^2 (xdu + udx) = 0$$

$$(2+3u)\,dx + 5u^2\,(xdu + udx) = 0$$

$$(5u^3 + 3u + 2)\,dx + 5u^2xdu = 0$$

$$\frac{1}{x}dx = -\frac{5u^2}{5u^3 + 3u + 2}du \text{ which is a separable equation.}$$

Sol.

Q6 (10 points) A small metal bar initially at $75^{\circ}F$ is placed in a freezer. The freezer is kept at the constant temperature $35^{\circ}F$. After one minute the temperature of the metal bar is $55^{\circ}F$. Find the exact time needed for the temperature of the metal bar to reach $45^{\circ}F$ after it is placed in the freezer.

Sol.
$$T(0) = 75, \ T_m = 35, \ T(1) = 55 \text{ and we need to find } T(?) = 45$$

$$\frac{dT}{dt} = (T - T_m) \ k \ \Rightarrow \frac{1}{T - T_m} dT = k dt$$

$$\ln(T - T_m) = kt + C$$

$$T - T_m = e^{kt + C_1} = Ce^{kt} \ \Rightarrow T = T_m + Ce^{kt} = 35 + Ce^{kt}$$

$$T(0) = 75 \ \Rightarrow 75 = 35 + C \ \Rightarrow C = 40 \text{ and } T = 35 + 40e^{kt}$$

$$T(1) = 55 \ \Rightarrow 55 = 35 + 40e^k \ \Rightarrow e^k = \frac{20}{40} = \frac{1}{2} \text{ and } e^{kt} = \left(\frac{1}{2}\right)^t$$

$$T = 35 + 40 \left(\frac{1}{2}\right)^t$$

$$T(?) = 45 \ \Rightarrow 45 = 35 + 40 \left(\frac{1}{2}\right)^t \ \Rightarrow \left(\frac{1}{2}\right)^t = \frac{1}{4}$$

$$t \ \ln\left(\frac{1}{2}\right) = \ln\left(\frac{1}{4}\right) \ \Rightarrow t = \frac{\ln\left(\frac{1}{4}\right)}{\ln\left(\frac{1}{2}\right)} = \frac{\ln 4}{\ln 2} = \log_2 4 = 2.$$

Q:7 (10 points) Verify that $y_1(x) = 2\sin x + 3\cos x$ and $y_2(x) = \sin x - \cos x$ are solutions of y'' + y = 0. Also detremine if $\{y_1(x), y_2(x)\}$ form a fundamental set of solutions on $[0, 2\pi]$.

Sol.
$$y_1(x) = 2 \sin x + 3 \cos x$$

 $y'_1(x) = 2 \cos x - 3 \sin x$ and $y''_1(x) = -2 \sin x - 3 \cos x = -y_1(x) \Rightarrow y''_1 + y_1 = 0$.
 $y_2(x) = \sin x - \cos x$
 $y'_2(x) = \cos x + \sin x$ and $y''_2(x) = -\sin x + \cos x = -y_2(x) \Rightarrow y''_2 + y_2 = 0$.
 $W(y_1, y_2) = \begin{vmatrix} 2 \sin x + 3 \cos x & \sin x - \cos x \\ 2 \cos x - 3 \sin x & \cos x + \sin x \end{vmatrix}$
 $= (2 \sin x + 3 \cos x) (\cos x + \sin x) - (\sin x - \cos x) (2 \cos x - 3 \sin x)$
 $= 5 \cos^2 x + 5 \sin^2 x = 5 \neq 0$ for all x .

Hence $\{y_1(x), y_2(x)\}$ form a fundamental set of solutions.