Math 202 Exam 1 Solution

Prepared by Dr. Muhammad Yousuf

Q.1: (a) (2-points) Consider the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=y^{2} \tag{A}
\end{equation*}
$$

Verify that $y=\frac{-1}{x+c}$ is a one paramenter family of solutions. (A).
Sol: $\quad y=\frac{-1}{x+c} \Rightarrow \frac{d y}{d x}=-1(-1)(x+c)^{2}=\frac{1}{(x+c)^{2}}=y^{2}$.
(b) (2-points) Find solutions of of equation (A) which satisfies the initial condition $y(0)=2$.

Sol: $\quad y(0)=2 \Rightarrow 2=\frac{-1}{0+c} \Rightarrow c=-\frac{1}{2}$ and $y=\frac{-1}{x-\frac{1}{2}}=\frac{-2}{x-1}$.
(c) (2-points) Find, if any, singular solutions of (A) and determine the largest interval of existance of each singular solution obtained.

Sol: \quad Singular solutions are given by $y^{2}=0 \Rightarrow y=0$ and $\frac{d y}{d x}=0$. The largest interval of existance is $(-\infty, \infty)$.
Q.2: (a) (3-points) Given that $x(t)=c_{1} \cos (w t)+c_{2} \sin (w t)$ is the general solution of the differential equation

$$
\ddot{x}+w x=0 \quad \text { on } \quad(-\infty, \infty), \quad w \neq 0 .
$$

Find all solutions which satisfy the initial conditions $x(0)=0$ and $\dot{x}\left(\frac{\pi}{2 w}\right)=0$.
Sol: $\quad x\left(0=0 \Rightarrow 0=c_{1} \cos (0)+c_{2} \sin (0)=c_{1} .1 \Rightarrow c_{1}=0\right.$.

$$
\begin{aligned}
& \dot{x}(t)=-c_{1} w \sin (w t)+c_{2} w \cos (w t) \\
& \dot{x}\left(\frac{\pi}{2 w}\right)=0 \Rightarrow 0=0+c_{2} w \cos \left(\frac{\pi}{2}\right)=c_{2} w(0)
\end{aligned}
$$

Since $w \neq 0$, therefore $0=0 . c_{2}$ which is true for any real value of c_{2}.
Thus the required solutions are $x(t)=c_{2} \sin (w t)$ with c_{2} arbitrary.
(b) (3-points) Given $y_{1}=e^{x}$ and $y_{2}=e^{x} \tan x$ are two solutions of the differentia equation

$$
y^{\prime \prime}-2(1+\tan x) y^{\prime}+(1+2 \tan x) y=0 .
$$

Determine whether or not the set $\left\{y_{1}, y_{2}\right\}$ form a fundamental set of solutions on the interval $\left(0, \frac{\pi}{2}\right)$.
Sol: \quad For $y_{1}=e^{x}, y_{1}^{\prime}=e^{x}$ and for $y_{2}=e^{x} \tan x, y_{2}^{\prime}=e^{x} \tan x+e^{x} \sec ^{2} x$
Now $W=\left|\begin{array}{cc}e^{x} & e^{x} \tan x \\ e^{x} & e^{x} \tan x+e^{x} \sec ^{2} x\end{array}\right|=\frac{1}{\cos ^{2} x} e^{2 x} \neq 0$ for all $x \in\left(0, \frac{\pi}{2}\right)$.
Hence $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set of solutions.
Q.3: (a) (3-points) Find a suitable substitution that transforms the differential equation

$$
x y d y+\left(4 x^{2}+y^{2}\right) d x=0
$$

to a separable equation. Find the new equation, but do not find its solution.
Sol: Given DE is a homogeneous equation of degree 2. Let $y=u x$, then $d y=x d u+u d x$
Substitute in $\mathrm{DE} \Rightarrow u x^{2}(x d u+u d x)+\left(4 x^{2}+u^{2} x^{2}\right) d x=0$
$\Rightarrow x^{2}\left[u x d u+\left(2 u^{2}+4\right) d x\right]=0 \Rightarrow u x d u=-\left(2 u^{2}+4\right) d x$
$\Rightarrow\left(\frac{u}{2 u^{2}+4}\right) d u=\frac{-1}{x} d x$ which is separable.
(b) (2-points) Find a suitable substitution that transforms the differential equation

$$
\left(\cot x-y^{2} \sin ^{3} x\right) d x+\frac{1}{y} d y=0
$$

into a linear equation. Find the new equation, but do not find its solution.
Sol: Given DE can be written as $\frac{d y}{d x}+(\cot x) y=y^{3} \sin ^{3} x$ which is a Bernoulli equation with $n=3$.

Let $u=y^{1-3}=y^{-2} \Rightarrow y^{2}=u^{-1} \Rightarrow y=u^{-\frac{1}{2}} \Rightarrow \frac{d y}{d x}=-\frac{1}{2} u^{-\frac{3}{2}} \frac{d u}{d x}$
$-\frac{1}{2} u^{-\frac{3}{2}} \frac{d u}{d x}+(\cot x) u^{-\frac{1}{2}}=u^{-\frac{3}{2}} \sin ^{3} x$
$\frac{d u}{d x}-2(\cot x) u=-2 \sin ^{3} x$ which is a linear equation.
Q.4: (7-points) Solve the initial value problem $x \ln (x) \frac{d y}{d x}+\cos ^{2}(y)=1, y(e)=\frac{\pi}{4}$.

Sol: $\quad x \ln (x) \frac{d y}{d x}+\cos ^{2}(y)=1$
$x \ln (x) \frac{d y}{d x}=1-\cos ^{2}(y)$

$$
\begin{aligned}
& x \ln (x) \frac{d y}{d x}=\sin ^{2}(y) \\
& \frac{1}{\sin ^{2}(y)} d y=\frac{1}{x \ln (x)} d x \\
& \csc ^{2}(y) d y=\frac{1}{x \ln (x)} d x \\
& -\cot (y)=\ln (\ln |x|)+C \\
& y(e)=\frac{\pi}{4} \quad \Rightarrow-\cot \left(\frac{\pi}{4}\right)=\ln \ln (e)+C \quad \Rightarrow-1=\ln (1)+C \quad \Rightarrow C=-1 . \\
& \cot (y)+\ln (\ln |x|)=1 .
\end{aligned}
$$

Q.5: (6-points) Find the general solution of the differential equation

$$
y d x=(x+y \ln y) d y
$$

Sol: Given DE is linear in x and $\frac{d x}{d y}$ because it can be written as $\frac{d x}{d y}-\frac{1}{y} x=\ln y$.
$I F=e^{\int-\frac{1}{y} d y}=e^{-\ln y}=\frac{1}{y}$.
$\frac{d}{d y}\left(\frac{x}{y}\right)=\frac{\ln y}{y} \Rightarrow \frac{x}{y}=\int \frac{\ln y}{y} d y=\frac{(\ln y)^{2}}{2}+C$
$x=\frac{y(\ln y)^{2}}{2}+C y$.
Q.6: (7-points) Solve the differential equation $\left(3 x+4 y^{2}\right) d x+4 x y d y=0$ by transforming it into an exact equation.

Sol: $\quad M(x, y)=3 x+4 y^{2}$ and $N(x, y)=4 x y$
$M_{y}=8 y$ and $N_{x}=4 y$
Since $M_{y} \neq N_{x}$, the given DE is not exact. So we need to find an integrating factor.

$$
\begin{aligned}
& \frac{M_{y}-N_{x}}{N}=\frac{8 y-4 y}{4 x y}=\frac{4 y}{4 x y}=\frac{1}{x}, \text { function of } x \text { alone. } \\
& \mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}=e^{\int \frac{1}{x} d x}=e^{\ln (x)}=x
\end{aligned}
$$

Multiply given DE by x to make it exact.

$$
\begin{aligned}
& \left(3 x^{2}+4 x y^{2}\right) d x+2 x^{2} y d y=0 \\
& \mu(x) N(x, y)=\frac{\partial f}{\partial y}=4 x^{2} y \\
& f(x, y)=\int 4 x^{2} y d y+h(x) \\
& f(x, y)=2 x^{2} y^{2}+h(x) \\
& \frac{\partial f}{\partial x}=4 x y^{2}+h^{\prime}(x)=\mu(x) M(x, y)=3 x^{2}+4 x y^{2} \\
& h^{\prime}(x)=3 x^{2} \Rightarrow h(x)=x^{3}+C
\end{aligned}
$$

$$
\text { Thus } f(x, y)=2 x^{2} y^{2}+x^{3}+C=0
$$

OR $2 x^{2} y^{2}+x^{3}=C$.
Q.7: (6-points) A glass of water initially at $50^{\circ} F$ is placed in a freezer. The freezer is kept at the constant temperature $30^{\circ} \mathrm{F}$. After one hour the temperature of the water in glass is $40^{\circ} \mathrm{F}$. Find the exact time needed for the temperature of the water to reach $32^{\circ} F$ after it is placed in the freezer.

Sol: \quad Solve the IVP $\frac{d T}{d t}=k\left(T-T_{m}\right), T(0)=50$, with $T_{m}=30^{\circ} F$.
$T(t)=T_{m}+c e^{k t}=30+c e^{k t}$.
Using $T(0)=50$ we get $c=20$. So $T(t)=30+20 e^{k t}$
Using $T(1)=40 \Rightarrow 40=30+20 e^{k} \Rightarrow k=-\ln 2=\ln \left(\frac{1}{2}\right)$.
$T(t)=30+20 e^{t \ln \left(\frac{1}{2}\right)}=30+20 e^{\ln \left(\frac{1}{2}\right)^{t}}=30+20\left(\frac{1}{2}\right)^{t}$.
Now $T(t)=32 \Rightarrow 32=30+20\left(\frac{1}{2}\right)^{t} \Rightarrow\left(\frac{1}{2}\right)^{t}=\frac{1}{10} \Rightarrow t=\frac{\ln \left(\frac{1}{10}\right)}{\ln \left(\frac{1}{2}\right)}=\frac{\ln 10}{\ln 2}$.

