Math 201 Quiz 5

(B)

Q.1: Find the point on the plane x - y + z = 4 that is closest to the point (1, 2, 3). Also find the shortest distance of (1, 2, 3) from the plane.

Sol: Let P(x, y, z) be any point on the plane. Its distance from the point (1, 2, 3) is $d = \sqrt{(x-1)^2 + (y-2)^2 + (z-3)^2}$. From equation of the plane, we get z = 4 - x + y and rewrite $d = \sqrt{(x-1)^2 + (y-2)^2 + (1-x+y)^2}$. Define $f(x,y) = d^2 = (x-1)^2 + (y-2)^2 + (1-x+y)^2$. We need to minimize the function f(x,y). $f_x = 2(x-1) - 2(1-x+y) = 4x - 2y - 4$ and $f_y = 2(y-2) + 2(1-x+y) = 4y - 2x - 2$. $f_x = 0$ and $f_y = 0 \Rightarrow x = \frac{5}{3}, y = \frac{4}{3}$. Now $f_{xx} = 4, f_{yy} = 4, f_{xy} = -2$, and discriminant $D = f_{xx}f_{yy} - (f_{xy})^2 = 16 - 4 = 12 > 0$. Also $f_{xx} = 4 > 0$. $\Rightarrow f(x,y)$ is minimum at $\left(\frac{5}{3}, \frac{4}{3}\right)$, that is, d is minimum. Also $z = 4 - x + y = 4 - \frac{5}{3} + \frac{4}{3} = \frac{11}{3} \Rightarrow \left(\frac{5}{3}, \frac{4}{3}, \frac{11}{3}\right)$ is on the plane x - y + z = 4 and is closest to the point (1, 2, 3). The shortest distance is $d = \sqrt{\left(\frac{5}{3} - 1\right)^2 + \left(\frac{4}{3} - 2\right)^2 + \left(\frac{11}{3} - 3\right)^2} = \frac{2}{3}\sqrt{3}$.

Q.2: Find the local maximum and local minimum values of the function $f(x, y) = 14 - 2x - 6y + x^2 + y^2$.

Sol: $f_x = 2x - 2$, $f_y = 2y - 6$ and $f_x = 0$, $f_y = 0 \Rightarrow x = 1$, y = 3. $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$. Thus $D = f_{xx}f_{yy} - (f_{xy})^2 = 4 > 0$, and $f_{xx} = 2 > 0 \Rightarrow f$ ha a local minimum at (1,3).

Q.3: Use Lagrange Multipliers to find the maximum and minimum values of the function $f(x, y) = x^2 + 2y^2$ subject to the constraint $x^2 + y^2 = 1$.

Sol: Define $g(x, y) = x^2 + y^2$. Then $\nabla f = \lambda \nabla g \Rightarrow 2x = 2x\lambda$ and $4y = 2y\lambda$.

 $2x = 2x\lambda \Rightarrow x(1-\lambda) = 0 \Rightarrow x = 0 \text{ or } \lambda = 1.$ For x = 0, $g(x, y) = 1 \Rightarrow y = \pm 1$. So the points are $(0, \pm 1)$.

 $4y = 2y\lambda \Rightarrow y(2-\lambda) = 0 \Rightarrow y = 0 \text{ or } \lambda = 2.$ For $y = 0, g(x,y) = 1 \Rightarrow x = \pm 1$. So the points are $(\pm 1, 0)$.

Now $f(0,\pm 1) = 2$ and $f(\pm 1,0) = 1 \implies$ maximum value of f subject to the constraint $x^2 + y^2 = 1$ is 2 and minimum value is 1.