Math201-111 Exam 1 Solution

Part I [52 pts] (Written: Provide all necessary steps required in the solution.)
Q1. (i) Find $d^{2} y / d x^{2}$ for the parametric curve C: $x=3 t^{2}-t, \quad y=2 t+t^{3}$.
Sol: $\frac{d y}{d x}=\frac{\frac{d y}{d z}}{\frac{d x}{d t}}=\frac{3 t^{2}+2}{d t-1}$ and
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{(6 t)(6 t-1)-\left(3 t^{2}+2\right) 6}{(6 t-1)^{2}}=\frac{36 t^{2}-6 t-18 t^{2}-12}{(6 t-1)^{2}}=\frac{18 t^{2}-6 t-12}{(6 t-1)^{2}}$
(ii) Find the interval (s) where C is concave up.

Sol: C is concave up if \#
$\frac{d^{2} y}{d x^{2}}=\frac{18 t^{2}-6 t-12}{(6 t-1)^{2}}=\frac{6(3 t+2)(t-1)}{(6 t-1)^{2}}=0$

t
$-2 / 3$
$3 \mathrm{t}+2$
$6 \mathrm{t}-1$
$\mathrm{t}-1$
$\frac{d^{2} y^{2}}{d x^{2}}$

The curve is concave up for $x \in\left(-\frac{2}{a}, \frac{1}{6}\right) \cup(1, \infty)$

Q2. Consider the vectors $\vec{u}=-3 \vec{i}+\vec{j}+2 \vec{k}$ and $\vec{v}=\vec{i}+2 \vec{j}-3 \vec{k}$
(i) Find the angle between \vec{u} and \vec{v}.

Sol: $\cos \theta=\frac{\frac{W}{W}}{|\vec{W}| \mid}=\frac{-3+2-4}{\sqrt{14} \sqrt{14}}=\frac{-7}{14}=-\frac{1}{2} \Rightarrow \theta=\frac{2 \pi}{8}$,
(ii) Find the projection of \vec{u} onto \vec{v}

Sol: $\operatorname{proj}=\left(\frac{\vec{v}}{|\vec{v}|^{2}}\right) \vec{v}=\frac{-7}{14}(1,2,-3)=\left(-\frac{1}{2},-1, \frac{3}{2}\right)$.

Q3. Use the scalar triple product to determine whether the four points:

$$
A(1,3,2), B(3,-1,6), C(5,2,0), D(3,6,-4)
$$

lie in the same plane.
Sol: $\overrightarrow{A E}=\langle 2,-4,4\rangle, \overrightarrow{A C}=\langle 4,-1,-2\rangle_{v}$ and $\overrightarrow{A D}=\langle 2,3,-6\rangle$
$\overrightarrow{A F} \cdot(\overrightarrow{A R} \times \overrightarrow{A D})=\left|\begin{array}{ccc}2 & -4 & 4 \\ 4 & -1 & -2 \\ 2 & 3 & -6\end{array}\right|=2(6+6)+4(-2.4+4)+4(12+2)=2.4-80+56=0$.

Q4. Find the exact length of the polar curve: $r=\theta^{2}, \quad 0 \leq \theta \leq \pi / 4$.
Sol: $s=\int_{Q}^{\frac{\pi}{4}} \sqrt{r^{2}}+\left(\frac{d r}{d \theta}\right)^{2} d \theta=\int_{\theta}^{\frac{\pi}{4}} \sqrt{\theta^{4}+4 \theta^{2}} d \theta=\int_{0}^{\frac{\pi}{4}} \theta \sqrt{\theta^{2}+4} d \theta=\left.\frac{1}{y}\left(\theta^{2}+4\right)^{\frac{8}{2}}\right|_{\theta} ^{\frac{\pi}{4}}$
$=\frac{1}{2}\left(\frac{\pi^{2}}{16}+4\right)^{\frac{1}{2}}-\frac{1}{2} 4^{\frac{2}{2}}-\frac{1}{2}\left(\frac{\pi^{2}}{16}+4\right)^{\frac{1}{2}}-\frac{8}{9}$
5. Consider the polar curve C: $r=2+4 \sin \theta$
(a) Show that \mathbf{C} is symmetric about the vertical line $\theta=\frac{\pi}{2}$.

Sol:
$r(\pi-\theta)=2+4 \sin (\pi-\theta)=2+4(\sin \pi \cos \theta-\cos \pi \sin \theta)=2+4 \sin \theta=r(\theta)$
(b) Find the polar coordinates of the points where C intersects the polar axis.

Sol: C intersect polar axis at $\theta=0, r=2$, that is $(2,0)$.
C also intersect polar axis at pole, that is $r=0$.

$$
\begin{aligned}
& r=2+4 \sin \theta=0 \Rightarrow \theta=\frac{7 \pi}{6}, \frac{11 \pi}{6} . \\
& \left(0, \frac{7 \pi}{6}\right),\left(0, \frac{1 \pi}{6}\right) .
\end{aligned}
$$

(c) Find the polar coordinates of the points where C intersects the lines $\theta=\frac{\pi}{2}$ and $\theta=\frac{\pi}{4}$ At $\theta=\frac{\pi}{2}, r=6$ and at $\theta=\frac{\pi}{4}, r=2+2 \sqrt{2}$

The points are $\left(6, \frac{\pi}{2}\right)$ and $\left(2+2 \sqrt{2}, \frac{\pi}{4}\right)$.
(d) Plot the points obtained in (b)-(c) and make use of (a) to sketch the graph of C in the following polar chart: [Indicate important values of r and θ in the outer circle of the chart]

Q1. If the end points of a diameter of a sphere lie at $A(1,4,-2)$ and $B(-7,1,2)$ then an equation of the sphere is given by
(a*) $x^{2}+y^{2}+z^{2}+6 x-5 y=7$
(b) $x^{2}+y^{2}+z^{2}-8 x-4 y=10$
(c) $x^{2}+y^{2}-z^{2}+6 x-4 y=7$
(d) $x^{2}+y^{2}+z^{2}+7 x-10 y=20$
(e) $x^{2}+y^{2}+z^{2}+6 x+4 y=12$

Sol: Mid point is $\left(\frac{1-7}{2}, \frac{4+1}{2}, \frac{-2+2}{2}\right)=\left(-5, \frac{8}{2}, 0\right)$
and radius is $R=\sqrt{(1+3)^{2}+\left(4-\frac{8}{2}\right)^{2}+(-2-0)^{2}}=\sqrt{16+\frac{9}{4}+4}=\frac{\sqrt{99}}{2}$
equation of the sphere is
$(x+3)^{2}+\left(y-\frac{8}{2}\right)^{2}+z^{2}=\frac{0}{4}$
$x^{2}+y^{2}+z^{2}+6 x-5 y=\frac{89}{4}-9-\frac{28}{4}=\frac{89-96-28}{4}=\frac{9 P-64}{4}=\frac{29}{4}=7$
Q2. Suppose that a 3-D vector \vec{v} lies below the $x y$-plane and has the direction angles α, β, γ with x, y and z axes respectively. If $\alpha=\frac{\pi}{4}, \beta=\frac{\pi}{3}$, then the value of γ is given by
(a*) $2 \pi / 3$
(b) $(\sqrt{2} \pi) / 2$
(c) $-1 / 2$
(d) $5 \pi / 6$
(e) $-1 / \sqrt{2}$

Sol: $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \Rightarrow \frac{1}{2}+\frac{1}{4}+\cos ^{2} \gamma=1 \Rightarrow \cos ^{2} \gamma=1-\frac{2}{4}=\frac{1}{2}$
Since the vector \vec{v} lies below $x y$-plane, therefore, $\cos y=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2} \Rightarrow \gamma=\frac{2 \pi}{8}$.
Q3. A value of α for which the vectors $\vec{u}=3 \vec{i}+\alpha \vec{k}$ and $\vec{v}=2 \alpha \vec{i}-\vec{j}$ have the same length is given by
(a*) $\sqrt{8 / 3}$
(b) $\sqrt{5 / 3}$
(c) $\sqrt{8 / 5}$
(d) $\sqrt{7 / 3}$
(e) $\sqrt{5 / 8}$

Sol: $3^{2}+\alpha^{2}=4 \alpha^{2}+1 \Rightarrow 3 \alpha^{2}=8 \Rightarrow \alpha=\sqrt{\frac{9}{a^{\prime}}}$

Q4. The area of the triangle with the vertices $(a, 0,0),(0,2 a, 0)$ and $(0,0,3 a)$ is
(a*) $7 a^{2} / 2$
(b) $5 a^{2} / 2$
(c) $6 a^{3}$
(d) $7 a$
(e) $3 a^{3} / 2$

Sol: Let $\vec{u}=\left(-a_{r} 2 a, 0\right)$ and $\vec{u}=\left(-a_{r} 0,3 a\right)$ be two adjacent vectors. Then

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{q} & \hat{l} & \hat{k} \\
-a & 2 a & 0 \\
-a & 0 & 3 a
\end{array}\right|=6 a^{2} \stackrel{q}{ }+3 a^{2} \hat{\varphi}+2 a^{2} \hat{k}
$$

$$
\text { and area } A=\frac{1}{2}|\vec{u} \times \vec{v}|=\frac{1}{2} \sqrt{36 a^{4}+9 a^{4}+4 a^{4}}=\frac{1}{2} \sqrt{49 a^{4}}=\frac{8 a^{4}}{2}
$$

Q5. The area of the region inside the curve $r=3 \sin \theta$ and outside the curve $r=2-\sin \theta$ is
(a*) $\int_{\pi / 6}^{5 \pi / 6}\left(4 \sin ^{2} \theta+2 \sin \theta-2\right) d \theta$
(b) $\int_{-\pi / 6}^{\pi / 6}\left(2 \sin ^{2} \theta-2 \sin \theta-1\right) d \theta$
(c) $\int_{\pi / 6}^{5 \pi / 6}\left(4 \sin ^{2} \theta+\sin \theta+3\right) d \theta$

(d) $\int_{\pi / 6}^{5 \pi / 6}\left(4 \sin ^{2} \theta+5 \sin \theta-2\right) d \theta$
(e) $\int_{-\pi / 6}^{\pi / 6}\left(4 \sin ^{2} \theta+5 \sin \theta-2\right) d \theta$

Sol: $A=\frac{1}{2} \int \frac{\frac{\pi}{6}}{\frac{\pi}{2}}\left(9 \sin ^{2} \theta-(2-\sin \theta)^{2}\right) d \theta=\frac{1}{2} \int \frac{\frac{\pi}{6}}{\frac{\pi}{6}}\left(9 \sin ^{2} \theta-4+4 \sin \theta-\sin ^{2} \theta\right) d \theta$

$$
=\frac{1}{2} \int \frac{\frac{3 \pi}{6}}{\frac{\pi}{6}}\left(8 \sin ^{2} \theta+4 \sin \theta-4\right) d \theta=\int_{\frac{\pi}{6}}^{\frac{\mathrm{k}}{6}}\left(4 \sin ^{2} \theta+2 \sin \theta-2\right) d \theta
$$

Q6. The Cartesian equation of the curve $x=\ln t, y=\sqrt{t}, t \geq 1$ is given by
(a*) $y=e^{x / 2}, x \geq 0$
(b) $y=e^{x}, x \geq 1$
(c) $y=e^{x / 2}, x \geq 1$
(d) $y=e^{x}, x \geq 0$
(e) $y=e^{2 x}, x \geq 0$

Sol: $x=\ln t, t \geq 0 \Rightarrow t=a^{x}, x \geq 0$

$$
y=\sqrt{t}=e^{\frac{x}{2}} x \geq 0
$$

Q7. The slope of the tangent line to the polar curve $r=\cos \theta+1$ at $\theta=\pi / 2$ is
(a*) 1
(b) $1 / 2$
(c) $1 / 3$
(d) 0
(e) $-1 / 2$

Sol: $x=r \cos \theta=\cos \theta \mid \cos ^{2} \theta, \quad d x=\sin \theta 2 \sin \theta \cos \theta$
$y-\operatorname{cota} \theta-\sin \theta+\sin \theta \cos \theta, \frac{d y}{d \theta}-\cos \theta+\cos 2 \theta$
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\cos \theta+\cos 2 \theta}{-\sin \theta-2 \sin \theta \cos \theta}, \quad$ and at $\theta=\frac{\pi}{2}, m=\frac{d y}{d x}=\frac{-1}{-1}=1$.
Q8. Two forces \boldsymbol{F} and \mathbf{G} are acting on an object placed at the origin of the $\boldsymbol{x y}$-plane with magnitudes 1 N and 2 N respectively.

If \boldsymbol{F} acts along the positive y-axis and \mathbf{G} makes an angle of $\theta=\pi / 3$ with the positive x-axis, then the magnitude of the resultant force $\boldsymbol{F}+\boldsymbol{G}$ is
(a*) $\sqrt{5+2 \sqrt{3}} \mathrm{~N}$
(b) $\sqrt{1+\sqrt{3}} \mathrm{~N}$
(c) $\sqrt{2+\sqrt{3}} \mathrm{~N}$
(d) $5+\sqrt{3} / 2 \mathrm{~N}$
(e) $\sqrt{2+2 \sqrt{3}} \mathrm{~N}$

Sol: $\vec{E}=0 q+1 q=\rho$ and $\vec{c}=2 \cos \frac{\pi}{a} q+2 \sin \frac{\pi}{a} \rho=q+\sqrt{3 j}$
$\vec{F}+\overrightarrow{6}=q+(1+\sqrt{3}) \hat{c}$ and $|\vec{F}+G|=\sqrt{1+(1+\sqrt{3})^{2}}=\sqrt{1+1+2 \sqrt{3}+3}=\sqrt{5+2 \sqrt{3}}$

