Area Bounded by Polar Curves

1. Area bounded by one loop of $r=\cos (2 t)$

$$
A:=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos (2 t)^{2} d t=\frac{\pi}{8}
$$

2. Area bounded by $r=4 \cos (t)$ and $r=4 \sin (t)$

$$
A:=\int_{0}^{\frac{\pi}{4}} 16 \sin (t)^{2} d t=-4+2 \pi
$$

3. Area bounded by inside $r=1+\sin (t)$ and outside $r=\sin (t)$

$$
A:=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\sin (t))^{2}-\sin (t)^{2} d t=\frac{\pi}{12}+\frac{1}{2}
$$

4. Area outside $r=2 \sin (2 t)$ and inside $r=2$

$$
A:=4 \pi-2 \int_{0}^{\frac{\pi}{2}} 4 \sin (2 t)^{2} d t=2 \pi
$$

5. Area outside $r=3 \cos (3 t)$ and inside $r=3$

$$
A:=9 \pi-\frac{3}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} 9 \cos (3 t)^{2} d t=\frac{27 \pi}{4}
$$

6. Area inside cardioid $r=1-\sin (t)$ and outside $r=1$

$$
A:=\int_{-\frac{\pi}{2}}^{0}(1-\sin (t))^{2}-1 d t=\frac{\pi}{4}+2
$$

7. Area outside cardioid $r=1-\sin (t)$ and inside $r=1$

$$
A:=\int_{0}^{\frac{\pi}{2}} 1-(1-\sin (t))^{2} d t=2-\frac{\pi}{4}
$$

8. Area inside both cardioid $r=1-\sin (t)$ and $r=1$

$$
A:=\int_{-\frac{\pi}{2}}^{0} 1 d t+\int_{0}^{\frac{\pi}{2}}(1-\sin (t))^{2} d t=\frac{5 \pi}{4}-2
$$

9. Area inside both $r=\sin (2 t)$ and $r=\cos (2 t)$

$$
A:=8 \int_{0}^{\frac{\pi}{8}} \sin (t)^{2} d t=-4 \cos \left(\frac{3 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right)+\frac{\pi}{2}
$$

