Area Bounded by Polar Curves

1. Area bounded by one loop of r = cos(2 t)

$$A := \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(2 t)^2 dt = \frac{\pi}{8}$$

2. Area bounded by $r = 4 \cos(t)$ and $r = 4 \sin(t)$

$$A := \int_0^{\frac{\pi}{4}} 16 \sin(t)^2 dt = -4 + 2 \pi$$

3. Area bounded by inside $r = 1 + \sin(t)$ and outside $r = \sin(t)$

$$A := \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 + \sin(t))^2 - \sin(t)^2 dt = \frac{\pi}{12} + \frac{1}{2}$$

4. Area outside $r = 2 \sin(2 t)$ and inside r = 2

$$A := 4 \pi - 2 \int_0^{\frac{\pi}{2}} 4 \sin(2t)^2 dt = 2 \pi$$

5. Area outside $r = 3\cos(3t)$ and inside r = 3

$$A := 9 \pi - \frac{3}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} 9 \cos(3 t)^2 dt = \frac{27 \pi}{4}$$

6. Area inside cardioid $r = 1 - \sin(t)$ and outside r = 1

$$A := \int_{-\frac{\pi}{2}}^{0} (1 - \sin(t))^{2} - 1 dt = \frac{\pi}{4} + 2$$

7. Area outside cardioid $r = 1 - \sin(t)$ and inside r = 1

$$A := \int_0^{\frac{\pi}{2}} 1 - (1 - \sin(t))^2 dt = 2 - \frac{\pi}{4}$$

8. Area inside both cardioid $r = 1 - \sin(t)$ and r = 1

$$A := \int_{-\frac{\pi}{2}}^{0} 1 \, dt + \int_{0}^{\frac{\pi}{2}} (1 - \sin(t))^{2} \, dt = \frac{5 \, \pi}{4} - 2$$

9. Area inside both $r = \sin(2t)$ and $r = \cos(2t)$

$$A := 8 \int_0^{\frac{\pi}{8}} \sin(t)^2 dt = -4 \cos\left(\frac{3\pi}{8}\right) \sin\left(\frac{3\pi}{8}\right) + \frac{\pi}{2}$$

