Solution Math 201 Quiz 3

(B)

Q.1: Reduce the equation and classify the surface, $x^2 - y^2 + z^2 - 2x + 2y + 4z + 4 = 0$.

Sol:
$$x^2 - 2x - y^2 + 2y + z^2 + 4z = -4$$

 $x^2 - 2x + 1 - y^2 + 2y - 1 + z^2 + 4z + 4 = -4 + 4 - 1 + 1$
 $(x-1)^2 - (y-1)^2 + (z+2)^2 = 0$

The surface is a cone.

Q.2: Identify the surface $\rho^2 \left(\sin^2 \phi - 4 \cos^2 \phi \right) = 4$.

Sol:
$$\rho^2 \sin^2 \phi - 4\rho^2 \cos^2 \phi = 4$$

 $r^2 - 4z^2 = 4$

$$x^2 + y^2 - 4z^2 = 4$$

The surface is hyperboloid of one sheet.

Q.3: Find the limit $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2+2y^2}$ if exist, or show that limit does not exist.

Sol: Let
$$x = 0$$
 and $y \to 0$, then $\lim_{y \to 0} \frac{0y \cos y}{0 + 2y^2} = 0$.

Let
$$y = 0$$
 and $x \to 0$, then $\lim_{x \to 0} \frac{x^2 0 \sin^2 0}{3x^2} = 0$.
Let $y = x$, then $\lim_{y \to 0} \frac{y^2 \cos y}{5y^2} = \frac{1}{5}$.

Let
$$y = x$$
, then $\lim_{y \to 0} \frac{y^2 \cos y}{5y^2} = \frac{1}{5}$.

Thus limit does not exist.