Q.1: The demand function for a manufacturer's product is $p=f(q)=600-2 q$, where p is the price (in dollars) per unit when q units are demanded (per week). Find the level of production that maximizes the manufacturer's total revenue and determine this revenue.
Sol: $R=p q=(6-q) q=-q^{2}+6 q$. The revenue is maximum at $q=-\frac{6}{2(-1)}=3$ and maximum revenue is $R(3)=-(3)^{2}+6(3)=\$ 9$.
Q.2: The supply and demand equations for a product are $p=q+20$ and $p=200-q$, respectively, where q represents the number of units and p represents the price per unit in dollars. Find the equilibrium price.
Sol: $\frac{q}{20}-3=\frac{80}{q}$ gives $q=80$ and $p=1$.
Q. 3 Solve the system

$$
y=8-x^{2}
$$

$4 x-y+11=0$
Sol: From second equation $y=4 x+11$. Put in the first equation, $x^{2}+4 x+3=0$ gives $x=-1$ and $x=-3$. For $x=-1, y=7$ and for $x=-3, y=-1$. So the solutions are $(-1,7)$ and $(-3,-1)$.

Graphically, the solutions are the points of intersection of the graphs:

Q.4: A coffee wholesaler blends together three types of coffee that sell for $\$ 2.20, \$ 2.30$, and $\$ 2.60$ per pound so as to obtain 100 pounds of coffee worth $\$ 2.40$ per pound. If the wholesaler uses the same amount of the two higher-priced coffees, how much of each type must be used in the blend?
Sol: Let $x=$ number of pounds of cofee that sells for $\$ 2.20$ per pound.
$y=$ number of pounds of cofee that sells for $\$ 2.30$ per pound.
$z=$ number of pounds of cofee that sells for $\$ 2.60$ per pound.
then $2.20 x+2.30 y+2.60 z=2.40(100)$

$$
\begin{aligned}
& x+y+z=100 \\
& y=z
\end{aligned}
$$

Solving these equations, we get $x=20, y=40, z=40$.

$$
x>-2
$$

Q.5: Sketch the region described by the following system of inequalities: $y \geq 2 x-4$.

$$
2 y+x<6
$$

