Q.1: The demand function for a manufacturer's product is p = f(q) = 600 - 2q, where p is the price (in dollars) per unit when q units are demanded (per week). Find the level of production that maximizes the manufacturer's total revenue and determine this revenue.

Sol: $R = pq = (6 - q)q = -q^2 + 6q$. The revenue is maximum at $q = -\frac{6}{2(-1)} = 3$ and maximum revenue is $R(3) = -(3)^2 + 6(3) =$

Q.2: The supply and demand equations for a product are p = q + 20 and p = 200 - q, respectively, where q represents the number of units and p represents the price per unit in dollars. Find the equilibrium price.

Sol:
$$\frac{q}{20} - 3 = \frac{80}{q}$$
 gives $q = 80$ and $p = 1$.
Q.3 Solve the system $y = 8 - x^2$

$$4x - y + 11 = 0$$

Sol: From second equation y = 4x + 11. Put in the first equation, $x^2 + 4x + 3 = 0$ gives x = -1 and x = -3. For x = -1, y = 7 and for x = -3, y = -1. So the solutions are (-1, 7) and (-3, -1).

Graphically, the solutions are the points of intersection of the graphs:

Q.4: A coffee wholesaler blends together three types of coffee that sell for \$2.20, \$2.30, and \$2.60 per pound so as to obtain 100 pounds of coffee worth \$2.40 per pound. If the wholesaler uses the same amount of the two higher-priced coffees, how much of each type must be used in the blend?

Sol: Let x = number of pounds of cofee that sells for \$2.20 per pound. y = number of pounds of cofee that sells for \$2.30 per pound. z = number of pounds of cofee that sells for \$2.60 per pound. then 2.20x + 2.30y + 2.60z = 2.40(100)x + y + z = 100y = zSolving these equations, we get x = 20, y = 40, z = 40.

Q.5: Sketch the region described by the following system of inequalities: $y \ge 2x - 4$.

