King Fahd University of Petroleum and Minerals
 Department of Mathematical Sciences
 Exam \# 2, Math 302-03

Name:
Serial \#:

Note: Show all your work to get full credit.
Q.1: Let $x(t)=\sin (t), y(t)=\cos (t), z(t)=t, 0 \leq t \leq 2 \pi$. Write the position vector and the tangent vector for the curve. Also find the length function.
Q.2: Find the directional derivative of the function $\varphi(x, y, z)=1-x^{2}-y^{2}-x y z$ in the direction of the vector $\mathbf{u}=\mathbf{i}-\mathbf{j}+\mathbf{k}$. Also find equation of the tangent plane to the surface $\varphi(x, y, z)=0$, at the point $(1,1,-1)$.
Q.3: Let $\mathbf{F}=\sinh \left(x^{2}-z\right) \mathbf{i}+2 x y \mathbf{j}+\left(z^{2}-y^{2}\right) \mathbf{k}$. Find Divergence of \mathbf{F} and Curl of \mathbf{F}.
Q.4: Sow that $\nabla \times(\nabla \varphi)=\mathbf{0}$, and $\nabla \cdot(\nabla \times \mathbf{F})=0$.
Q.5: Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{R}$, where $\mathbf{F}=\sin (x) \mathbf{i}+2 z \mathbf{j}-\mathbf{k}$ and C is given by $x=t, y=$ $t^{2}, z=t^{3}$, for $0 \leq t \leq 3$.
Q.6: Use Green's Theorem to evaluate the integral $\oint_{C} \mathbf{F} \cdot d \mathbf{R}$, where $\mathbf{F}=x^{2} y \mathbf{i}-x y^{2} \mathbf{j}$ and C is the boundary of the region $x^{2}+y^{2} \leq 4, y \geq 0$.
Q.7: Evaluate the surface integral $\iint_{\Sigma} f(x, y, z) d \sigma$, where $f(x, y, z)=z$ and Σ is the cone $x=$ $\sqrt{y^{2}+z^{2}}$, for $y^{2}+z^{2} \leq 9$.
Q.8: Evaluate the surface integral $\iint_{\Sigma} f(x, y, z) d \sigma$, where $f(x, y, z)=x$ and Σ is part of the plane $5 x+2 y+z=10$ in the first octant.
Q.9: Evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{R}$, where $\mathbf{F}=(-4 \cosh (x y)-4 x y \sinh (x y)) \mathbf{i}-4 x^{2} \sinh (x y) \mathbf{j}$, and C is any path from $(1,1)$ to $(2,2)$. (Hint: find potential function φ for \mathbf{F} if it is conservative)
Q.10: Calculate one side of the Gauss's Divergence Theorm for the vector field $\mathbf{F}=(x-y) \mathbf{i}+$ $(y-4 x z) \mathbf{j}+x z \mathbf{k}, \Sigma$ is the rectangular box bounded by the coordinate planes $x=0, y=0, z=0$, and by the planes $x=3, y=4, z=5$.

