Note: Show all your work to get full credit.

Q.1: Let $x(t) = \sin(t)$, $y(t) = \cos(t)$, z(t) = t, $0 \le t \le 2\pi$. Write the position vector and the tangent vector for the curve. Also find the length function.

Q.2: Find the directional derivative of the function $\varphi(x, y, z) = 1 - x^2 - y^2 - xyz$ in the direction of the vector $\mathbf{u} = \mathbf{i} - \mathbf{j} + \mathbf{k}$. Also find equation of the tangent plane to the surface $\varphi(x, y, z) = 0$, at the point (1, 1, -1).

Q.3: Let $\mathbf{F} = \sinh(x^2 - z)\mathbf{i} + 2xy\mathbf{j} + (z^2 - y^2)\mathbf{k}$. Find Divergence of \mathbf{F} and Curl of \mathbf{F} .

Q.4: Sow that $\nabla \times (\nabla \varphi) = \mathbf{0}$, and $\nabla \cdot (\nabla \times \mathbf{F}) = 0$.

Q.5: Evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{R}$, where $\mathbf{F} = \sin(x)\mathbf{i} + 2z\mathbf{j} - \mathbf{k}$ and C is given by x = t, $y = t^2$, $z = t^3$, for $0 \le t \le 3$.

Q.6: Use Green's Theorem to evaluate the integral $\oint_C \mathbf{F} \cdot d\mathbf{R}$, where $\mathbf{F} = x^2 y \mathbf{i} - x y^2 \mathbf{j}$ and C is the boundary of the region $x^2 + y^2 \le 4$, $y \ge 0$.

Q.7: Evaluate the surface integral $\iint_{\Sigma} f(x, y, z) d\sigma$, where f(x, y, z) = z and Σ is the cone $x = \sqrt{y^2 + z^2}$, for $y^2 + z^2 \leq 9$.

Q.8: Evaluate the surface integral $\iint_{\Sigma} f(x, y, z) d\sigma$, where f(x, y, z) = x and Σ is part of the plane 5x + 2y + z = 10 in the first octant.

Q.9: Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{R}$, where $\mathbf{F} = (-4\cosh(xy) - 4xy\sinh(xy))\mathbf{i} - 4x^2\sinh(xy)\mathbf{j}$, and *C* is any path from (1,1) to (2,2). (Hint: find potential function φ for \mathbf{F} if it is conservative)

Q.10: Calculate one side of the Gauss's Divergence Theorm for the vector field $\mathbf{F} = (x - y)\mathbf{i} + (y - 4xz)\mathbf{j} + xz\mathbf{k}$, Σ is the rectangular box bounded by the coordinate planes x = 0, y = 0, z = 0, and by the planes x = 3, y = 4, z = 5.