#### Series Solution about regular singular points

### Part (1) Difference of the Roots of Indicial Equation is Not an Integer

Use the Method of Frobenius to solve

$$2x^2y'' + xy' - (1+x)y = 0$$

Step 1: Write the Equation in the Form:

$$y'' + P(x)y' + Q(x)y = 0$$

Hence, x = 0 is a regular singular point for the given DE.

⇒ we can find at least one series solution of the form

$$y(x;r) = \sum_{k=0}^{\infty} c_n x^{n+r}$$
. Therefore,

Step 2

$$y = \sum_{n=0}^{\infty} c_n x^{n+r}$$
  $\Rightarrow -(1+x)y = -\sum_{n=0}^{\infty} c_n x^{n+r} - \sum_{n=0}^{\infty} c_n x^{n+r+1}$ 

$$y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1}$$
 
$$\Rightarrow xy' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r}$$

$$y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2} \Rightarrow 2x^2 y'' = \sum_{n=0}^{\infty} 2(n+r)(n+r-1)c_n x^{n+r-2}$$

Step 3: Change of Power is Required only in one Series, i.e. (\*): [k=n+1]

Step 4: Substitution into the DE gives:

$$\sum_{k=0}^{\infty} 2(k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} - \sum_{k=0}^{\infty} c_k x^{k+r} - \sum_{k=1}^{\infty} c_{k-1} x^{k+r} = \sum_{k=0}^{\infty} c_k x^{k+r} - \sum_{k=0}^{\infty} c_k x^{k+r} - \sum_{k=0}^{\infty} c_k x^{k+r} = \sum_{k=0}^{\infty} c_k x^{k+r} = \sum_{k=0}^{\infty} c_k x^{k+r} - \sum_{k=0}^{\infty} c_k x^{k+r} = \sum_{k=0}^{\infty} c_k x^{k+r} = \sum_{k=0}^{\infty} c_k x^{k+r} - \sum_{k=0}^{\infty} c_k x^{k+r} = \sum_{k=0}^{\infty} c_k x^{k$$

Step 5: Separate the terms for k = 0 in the  $1^{st}$  3 Summations. Then Combine All:

$$[2r(r-1)+r-1]c_0 + \sum_{k=1}^{\infty} \{[2(k+r)(k+r-1)+(k+r)-1]c_k - c_{k-1}\}x^{k+r} = 0$$

Note: 2r(r-1) + r - 1 = 0 is the Indicial Equation &  $c_0 \neq 0$ 

# Step 6: Recurrence Relation:

$$(k+r-1)(2k+2r+1)c_k - c_{k-1} = 0$$
 (\*\*)

Case 1: r = 1 in (\*\*)

$$c_k = \frac{1}{k(2k+3)}c_{k-1}, \quad k = 1, 2, 3...$$

$$k = 1$$
:  $c_1 = (1/1.5)c_0$ 

$$k = 2$$
:  $c_2 = (1/2.7)c_1 = (1/[2!5.7])c_0$ 

$$k = 3$$
:  $c_3 = (1/3.9)c_2 = (1/[3!5.7.9])c_0$ 

$$k=4:\ c_4=(1/4.11)c_3=(1/[4!5.7.9.11])c_0$$
 .

Therefore, the Frobenius Series Solution is:

$$y(x) = x\{c_0 + c_1x + c_2x^2 + c_3x^3 + c_4x^4 + \cdots\}$$
  
=  $c_0x[1 + \frac{x}{5} + \frac{x^2}{2!5.7} + \frac{x^3}{3!5.7.9} + \frac{x^4}{4!5.7.9.11} + \cdots]$ 

First Solution is given by:

$$y_1(x) = x + \frac{x^2}{5} + \frac{x^3}{2!5.7} + \frac{x^4}{3!5.7.9} + \frac{x^5}{4!5.7.9.11} + \cdots$$

Case 2:  $r = -\frac{1}{2}$  in (\*\*)

$$c_k = \frac{1}{k(2k-3)}c_{k-1}, \quad k = 1, 2, 3...$$

$$k = 1$$
:  $c_1 = -c_0$ 

$$k = 2$$
:  $c_2 = (1/2.1)c_1 = (-1/[2!])c_0$ 

$$k = 3$$
:  $c_3 = (1/3.3)c_2 = (-1/[3!1.3])c_0$ 

$$\begin{array}{l} k=4: \ c_4=(1/4.5)c_3=(-1/[4!1.3.5])c_0 \\ : \end{array}$$

Therefore, the Frobenius Series Solution is:

$$y(x) = x^{-1/2} \{ c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \cdots \}$$
  
=  $c_0 x^{-1/2} [1 - x - \frac{x^2}{2!} + \frac{x^3}{3!1.3} - \frac{x^4}{4!1.3.5} + \cdots ]$ 

Second LI Solution is given by:

$$y_2(x) = x^{-1/2} [1 - x - \frac{x^2}{2!} + \frac{x^3}{3!1.3} - \frac{x^4}{4!1.3.5} + \cdots]$$

# **General Solution:**

$$y(x) = a_1 y_1(x) + a_2 y_2(x)$$

# <u>Part (2)</u> Difference of the Roots of Indicial Equation is a Positive Integer Case (i) Two Frobenius Solutions

Use the Method of Frobenius to get 2 LI Solutions of

$$xy'' + (x-6)y' - 3y = 0$$

about the R S P  $x_0 = 0$ .

Step 1: Write the Equation in the Form:

$$x^{2}y'' + xA(x)y' + B(x)y = 0$$

Here, A(x) = x - 6; B(x) = -3x both are Analytic at  $x_0 = 0$ .

Step 2: Write the Indicial Equation:

$$r(r-1) + A(0)r + B(0) = 0$$

$$r(r-1) + (-6)r + (0) = 0 \Rightarrow r^2 - 7r = 0 \Rightarrow r(r-7) = 0$$

Step 3: Roots of Indicial Equation: i) r = 0, ii) r = 7 [Real & Distinct Roots but Differ by an Integer.]  $\Rightarrow$  The Equation has at least one Frobenius Solutions

Step 4: Solution is of the form  $y(x;r) = \sum_{n=0}^{\infty} c_n x^{n+r}$ . Therefore,

$$y = \sum_{n=0}^{\infty} c_n x^{n+r}$$
  $\Rightarrow -3y = -\sum_{n=0}^{\infty} 3c_n x^{n+r}$ 

$$y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1} \implies (x-6)y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} - \sum_{n=0}^{\infty} 6(n+r)c_n x^{n+r}$$

$$y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2} \Rightarrow xy'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-1}$$

Step 5: Change of Power is Required in two Series, i.e. (\*): [k = n-1]

Step 6: Substitution into the DE gives:

$$\sum_{k=-1}^{\infty} \left[ (k+r+1)(k+r) - 6(k+r+1) \right] c_{k+1} x^{k+r} + \sum_{k=0}^{\infty} \left[ (k+r) - 3 \right] c_k x^{k+r} = 0$$

Step 7: Separate the terms for k = -1 in the  $1^{st}$  Summation. The Combine All:

$$r(r-7)c_0x^{-1+r} + \sum_{k=0}^{\infty} \{ [(k+r+1)(k+r-6)]c_{k+1} + (k+r+1)c_k \} x^{k+r} = 0$$

[Note: r(r-7) = 0 is the Indicial Equation &  $c_0 \neq 0$ ] r = 0.7

Step 8: Recurrence Relation: k = 0,1,2,...

$$[(k+r+1)(k+r-6)]c_{k+1} + (k+r+1)c_k = 0 \qquad (**)$$

### Case 1:

For the Smaller Root r = 0 in (\*\*)

$$(k+1)(k-6)c_{k+1} + (k-3)c_k = 0,$$
  
 $k = 0,1,2,3...$ 

**Important Note:** k - 6 = 0 when k = 6, we can not divide by the term to write  $c_{k+1}$  in terms of  $c_k$  until k > 6.

$$k = 0$$
:  $-6c_1 + (-3)c_0 = 0 \Rightarrow c_1 = -(1/2)c_0$ 

$$k = 1$$
:  $-5c_2 + (-2)c_1 = 0 \Rightarrow c_2 = (1/10)c_0$ 

$$k = 2$$
:  $-4c_3 + (-1)c_2 = 0 \Rightarrow c_3 = -(1/120)c_0$ 

$$k = 3: -3c_4 + (0)c_3 = 0 \Rightarrow c_4 = 0$$

$$k = 4: -2c_5 + (1)c_4 = 0 \Rightarrow c_5 = 0$$

$$k = 5: -1c_6 + (2)c_5 = 0 \Rightarrow c_6 = 0$$

$$k = 6$$
:  $(0)c_7 + (3)c_6 = 0 \Rightarrow (0)c_7 = 0$   
 $\Rightarrow c_7$  can be assigned any value.

For  $k \ge 7$ , we have the recurrence relation :

$$c_{k+1} = \frac{-(k-3)}{(k+1)(k-6)} c_k$$

$$k = 7$$
:  $c_8 = (-4/8.1)c_7$ 

$$k = 8$$
:  $c_9 = (-5/9.2)c_8 = (4.5/[2!8.9])c_7$ 

$$k = 9$$
:  $c_{10} = (-6/10.3)c_9 = (-4.5.6/[3!8.9.10])c_7$ .

(1) Choose  $c_0 \neq 0$  and  $c_7 = 0$ . Then 1st. Sol. is:

$$y_1(x) = c_0 \left[ 1 - \frac{x}{2} + \frac{x^2}{10} - \frac{x^3}{120} \right]$$

(2) Choose  $c_7 \neq 0$  and  $c_0 = 0$ . Then 2nd. Sol. is:

$$y_2(x) = \{c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \cdots \}$$

#### Note:

- 1. In the problems of above type, first use the smaller root of the Indicial Eq. Sometimes it provides both LI Frobenius solutions.
- 2. If  $2^{nd}$  solution is not found as indicated in the above note, the apply the Method of Reduction of Order using  $y_2 = u(x)y_1$  and find u(x) as indicated in the Method above.

<u>Part (3)</u> <u>Identical Roots of the Indicial Equation</u> (1<sup>st</sup> Frobenius Solution, 2<sup>nd</sup> by Reduction of Order)

Use the Method of Frobenius to get 2 LI Solutions of

$$4x^{2}y'' - 4x^{2}y' + (1+2x)y = 0$$
about the R S P  $x_{0} = 0$ .

<u>Step 1</u>: Write the Equation in the Form:

$$x^{2}y'' + xA(x)y' + B(x)y = 0$$

Here, A(x) = -x; B(x) = (1+2x)/4 both are Analytic at  $x_0 = 0$ .

Step 2: Write the Indicial Equation:

$$r(r-1) + A(0)r + B(0) = 0$$

$$r(r-1) + (0)r + (1/4) = 0 \Rightarrow r^2 - r + (1/4) = 0 \Rightarrow (r - (1/2))^2 = 0$$

Step 3: Roots of Indicial Equation: i) r = 1/2, ii) r = 1/2

[Real & Identical Roots.]

⇒ The Equation has at least one Frobenius Solution

Step 4: Solution is of the form  $y(x;r) = \sum_{n=0}^{\infty} c_n x^{n+r}$ . Therefore,

$$y = \sum_{n=0}^{\infty} c_n x^{n+r}$$
  $\Rightarrow (1+2x)y = \sum_{n=0}^{\infty} c_n x^{n+r} + \sum_{n=0}^{\infty} 2c_n x^{n+r+1} *$ 

$$y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1}$$
  $\Rightarrow -4x^2 y' = -\sum_{n=0}^{\infty} 4(n+r)c_n x^{n+r+1}$ 

$$y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2} \implies 4x^2 y'' = \sum_{n=0}^{\infty} 4(n+r)(n+r-1)c_n x^{n+r}$$

Step 5 Change of Power is Required in two Series, i.e. (\*): [k=n+1]

Step 6: Substitution into the DE gives:

$$\sum_{k=0}^{\infty} \left[4(k+r)(k+r-1)+1\right] c_k x^{k+r} - \sum_{k=1}^{\infty} \left[4(k+r-1)-2\right] c_{k-1} x^{k+r} = 0$$

Step 7: Separate the terms for k = 0 in the 1<sup>st</sup> Summation. Then Combine All:

$$[4r(r-1)+1]c_0x^r + \sum_{k=1}^{\infty} \{[4(k+r)(k+r-1)+1]c_k - [4(k+r-1)-2]c_{k-1}\}x^{k+r} = 0$$

[Note:  $4r^2 - 4r + 1 = 0$  is the Indicial Equation &  $c_0 \neq 0$ ]

Step 8: Recurrence Relation: n = 0,1,2,....

$$[4(k+r)(k+r-1)+1]c_k - [4(k+r-1)-2]c_{k-1} = 0$$

(\*\*)

Case 1: r = 1/2 in (\*\*)

$$c_k = \frac{k-1}{k^2}c_{k-1}, \quad k = 1, 2, 3...$$

$$k = 1$$
:  $c_1 = 0 \Rightarrow c_k = 0, k = 1, 2, \cdots$ 

Therefore, the Frobenius Series Solution is:

$$y(x) = x^{1/2} \{ c_0 x + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \dots \}$$
  
=  $c_0 x^{1/2}$ 

First Solution is given by:  $y_1(x) = x^{1/2}$ 

Important Note: We can not find the Second Frobenius Solution for the DE. For Second Solution we shall have to use the Method of Reduction of Order.

#### **Second Solution will be of the Form**

$$y_2 = y_1 \int \frac{G(x)}{[y_1]^2} dx$$
 where  $G(x) = e^{-\int [P(x)/x] dx}$ 

Here: P(x) = -x and  $[y_1]^2 = x$ 

$$\Rightarrow \int \frac{e^{-\int [P(x)/x]dx}}{\left[y_1\right]^2} dx = \int \frac{e^x}{x} dx = \int \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^n}{n!} dx$$
$$= \int \sum_{n=0}^{\infty} \frac{x^{n-1}}{n!} dx = \int \frac{1}{x} dx + \int \sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} dx$$

$$= \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n!n}$$

$$\Rightarrow y_2 = y_1 \left[ \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n! n!} \right]$$

# **General Solution:**

$$y(x) = a_1 y_1(x) + a_2 y_2(x)$$