MATH 260 MATLAB EXERCISE I

Commands (I)

Basic Operations: Addition (+)Subtraction (-) Multiplication (*) Division (/)Exponent (^)

Example:
$$x^2 + \frac{2}{3}x - 16 \div 7^5 \times 2 = x^2 + \frac{2}{3}x - \frac{16}{7^5} \times 2 = x^2 + \frac{2}{3}x - \frac{16}{7^5} \times 2 = x^4 + \frac{2}{7^5} \times 2 = x^5 + \frac{2$$

Solution of ODE: Command (dsolve)

$$y' = Dy$$
, $y'' = D2y$, $y''' = D3y$, Independent variable $x = 'x'$

The following 3 examples show how to use MATLAB to solve ODE:

Example 1

Solve the Ist Order ODE: y' + 2y = xMATLAB Command: >>dsolve (Dy + 2 * y = x', x') Press "Enter key"

MATLAB Answer: $1/2 * x - 1/4 + \exp(-2 * x) * C1$

What does MATLAB Answer mean: $y = \frac{1}{2}x - \frac{1}{4} + Ce^{-2x}$

Example 2

Solve Ist Order IVP: y' = ay y(0) = b

MATLAB Command: >>dsolve (Dy = a * y', 'y(0) = b', 'x') Press "Enter key"

MATLAB Answer: $\exp(a * x) * b$

What does MATLAB Answer mean: $y = be^{ax}$

Example 3

Solve the 2nd Order IVP:
$$y'' = -a^2 y$$
, $y(0) = 1$, $y'\left(\frac{\pi}{a}\right) = 0$

MATLAB Command:

>>dsolve
$$\left(D2y = -a^2 * y', y(0) = 1', Dy \left(\frac{\pi}{a} \right) = 0', x' \right)$$
 Press "Enter key"

MATLAB Answer: cos(a * x)

What does MATLAB Answer mean: $y = \cos(ax)$

Now do the same and **solve the following ODE**:

1.
$$xy' - y = x$$
, $y(1) = 6$

2.
$$y' + 6y = e^x$$

3.
$$xy' - 8y = x^3 \cos x$$