
Name: ______Solution ______Section # ______ Ser. # _____

Consider the autonomous first order differential equation $\frac{dy}{dx} = y^2 + y - 2$.

 a) Find the critical points and phase portrait, and then classify each critical point in terms of its stability.

 $f(y) = y^2 + y - z = 0$ (y-1)(y+2) = 0 $\therefore y=1, -z \text{ are Critical Points}.$ y=1, -z are Critical Points. y=1, -z are Critically Stable. [See below]

b) Sketch the graph of the solution curve determined by the initial condition $y(0) = -\frac{1}{2}$.

