
Review of Power Series   (I)

Infinite Series of Constants: 
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n = Index of the series (Dummy Variable)
k : A fixed integer (e.g. -16, 0, 1, 40,…)
c k  = 1st Term of the Series
c n  = nth (or General) Term of the Series

Shift of Index of Summation “n”
(Making a suitable substitution)
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Power Series in (x – a) or centered at a
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Here, c n and a are Constants.
Note: For any value of x, a Power Series is a 

Series of Constants
Examples:
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ii. Replace x–5 by u in (i). Then
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is a power series in u centered at u=0.
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  is a Series of Constants obtained from (i) 

for x=16.

Convergence of Power Series [PS]

We say that the PS
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at x = x1 if the Series of Constants 
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Example: The PS 
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diverges for x=1.

Interval of Convergence

The set of all points for which a PS converges 
is called the Interval of Convergences of the 
PS

Example: The PS 
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0 < x < 2 and diverges outside ( 0 , 2). The Interval 
of Convergence for this series is ( 0 , 2) .

Basic Convergence Theorem for PS

For a PS 
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following statements is True:

1. The PS Converges only at x=a.

2. The PS Converges for all Real x.

3. There is a +ive real R such that the PS 
converges for |x-a|<R, i.e. a - R < x < a + R
and Diverges for |x - a| > R.

       Div                   Conv                Div

                  a-R         a        a+R

Radius of Convergence of PS
The Number R appearing in Possibility (3) is 
called the Radius of Convergence of the PS.

Example: The Radius of Convergence of the PS 
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Convergence at the End Points

If a PS 
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Interval (a-R , a+R), it may or may not 
converge at the end Points a  R . Therefore, 
the convergence at the End Points is tested 
separately in order to decide about the Interval 
of Convergence.

Example: The Interval of Convergence of the PS 
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Ratio Test for Finding Radius of 

Convergence of 
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i. R= 1 / L is Radius of Convergence of PS (1)

ii. L = 0  The PS Converges for all Real x.

iii. L = ∞  The PS Converges for x = a.

Example
Find the Radius and Interval of Convergence 

of the PS
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Solution: Here, cn = n2/3n , a = 4
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i. R = 3 is the Radius of  Conv. of  the PS.

ii. The PS Converges in (1 , 7)

iii The PS Diverges at x = 1, 7 (!!)

iv. Interval of Conv. of the PS = (1 , 7) .

Algebra of Power Series

i.     Equality of 2 Series
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ii. (Addition & Subtraction of 2 PS)
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as One Series.

Method

While adding two SeriesBoth Series must start 
with the Same Power of x.  

[For this, Shift the Indices of Summation]
Coefficients of Same Power of x will be added.

Solution

i. Put m = n-2 in the 1st Series. Then
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ii. Put m = n+1 in the 2nd Series. Then

1
1

0 1
( 1) n m

n m
n m

n c x mc x
 




 
  

iii. Add the Series
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Recurrence Relation
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Power Series as a Function
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i. The Domain of F(x) = Interval of Convergence of PS

ii. If R = Radius of Convergence of the PS in (2), then

    a) F(x) is Continuous, Differentiable and Integrable
         on the interval ( R - a , R + a )

    b) F(x) and  F(x) dx can be found respectively by     
         Term-by-Term Differentiation and Integration of  
         PS(2).



Multiplication of Series by a Series

Find First Four terms of the Power Series in x
for the function f (x) = e x ln (1- x)

Method
1. Write the Power Series of both 

functions.
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2. Expand both Series and Multiply term 
by term:
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(After gathering alike powers of x.)

Note:
Sometimes it is quite hard to find a solution of 

a simple ODE like
y + e xy= 0

by the Known Integral / Substitution Methods.
Solution for this type of Problems may be 

found in the form of Power Series. 

Example 1
i. Solve the ODE :   y  +2y = 0 ….. (1)
using a method of solutions for Ist Order ODE.

ii. Solve the ODE (1) using the Power Series 
Solution.

(i) Solution: (1) is Separable Equation
dy / y  = - 2 dx

 y = c 2xe  is a Solution of (1)

(ii) Solution in Series for
y  +2 y = 0 ….. (1)

i. Set y = 
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ii. Eq. (1) becomes
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iii. Combine the similar Powers of x:
[set m= n-1 in the 1st Series]
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iii. Substituting in Eq (2) gives us:
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iv. By Identity Principle, each Coefficient 
of the Series is Zero: 
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vi  Calculation Parameters:
m Cm Using (*)
0 C1 -2 C0 / 1
1 C2 -2 C1/2 = 22 C0 / 2!
2 C3 -2 C2 /3 = - 23 C0 /1.2.3 = - 23 C0 / 3!
. .
. .
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v. The Solution in Series is given by

y = 
0

n
n

nc x



  = 0

0

2
( 1)

!

n
n n

n

c
x

n







  2
0 0

0

2

!

n

x

n

x

n
c c e









What is Power Series Solution of a 
Differential Equation?

A series of the form y(x) =
0
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“with appropriate choice of constants cn and 
r” when satisfies a given DE is known as 

“Power Series Solution of the DE”. 


