Definition and Terminology

Notation	Meaning	Remark	Example
y = f(x)	y is a function of x	i. x is Independent Variable	(1) $y = 3 \sin x + 5$
	[Explicit Function]	ii. y is Dependent Variable	(2) $y = 2 \ln x + 3\sqrt{x}$
f(x, y) = 0	Functional Equation	In many cases, y CAN NOT be	(*) $y \cos x + y^2 x = 6$
	[y as Implicit Function of x]	an Explicit Function of <i>x</i>	
dy on w'	Ordinary Derivative of y with	Rate of Change of y with	$(1) y' = 3\cos x$
$\frac{dx}{dx}$ or y	respect to x	respect to x	(*) $y' = \frac{y \sin x - y^2}{y \sin x - y^2}$
			$\cos x + 2yx$
z=f(x, y)	z is a function of x, y	i. x, y are Independent Variable	$(3) z = 3 \sin(xy) - x$
		ii. z is Dependent Variable	
$\frac{\partial z}{\partial z}$ or z	Partial Derivative of z with	Rate of Change of <i>z</i> with	(3) $\frac{\partial z}{\partial z} = 3x \cos(xy)$
$\partial y = \partial y$	respect to y	respect to y	$\partial y = \partial y$
		Variable x will be treated as Constant	

Differential Equations

An Equation that Contains <u>Derivatives or Partial Derivatives</u> of <u>One or More Dependent</u> <u>Variables</u> with respect to <u>One or More Independent Variables</u>

Classifications of Differential Equations

I. Type of Differential Equations (ODE / PDE)

Ordinary Differential Equation (ODE) contains

Ordinary Derivatives of One or More Dependent Variables w.r.t. a Single Independent Variable

Examples

1.
$$3\frac{dy}{dx} + 2y = e^{4x}$$

2.
$$\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4x^2y = 0$$

II. Order of Differential Equations [Order of <u>Highest Derivative</u> in the Equation]

Examples:

1.
$$3\frac{dy}{dx} + 2y = e^{4x}$$
 (First Order ODE)
2. $\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right)^4 + 4x^2y = 0$ (2nd Order ODE)
3. $f(x, y, y', y'', \dots, y^{(n)}) = 0$ (nth Order ODE)

Partial Differential Equation (PDE) contains

Partial Derivatives of One or More Dependent Variables w.r.t. Two or More Independent Variable

Examples 1. $\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$

2.
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial t^2} - 2\frac{\partial u}{\partial t}$$

III. Linear ODE				
$y^{(n)} = f(x, y, y',, y^{(n-1)})$				
is Linear ODE if f is a Linear Function of				
$\mathcal{Y}, \mathcal{Y}\mathcal{Y}^{(n-1)}$				
	ODE	Order	Linear	
1.	$2 y' + 3xy = y \sin x$	1	Yes	
2.	$2 y' + 3xy = \sin y$	1	No	
3.	$y'''+3xy y'=\sin x$	3	No	
4.	$y' + 3x(y'')^3 = \sin x$	2	No	
5.	$y' + 3\sin x y'' = \cos x$	2	Yes	

Solution of a Differential Equations $f(x, y, y', y'', ...y^{(n)}) = 0$ $y = \Box(x)$ defined on an Interval **I** is a Solution if $f(x, \Box, \Box', \Box'', \dots \Box^{(n)}) = 0$

Exercises 1.1					
Q .	Equation	Туре	Order	Linear /	Solution
				Nonlinear	(Verify!)
15	$y' = 25 + y^2$				$y = 5 \tan x$
19	$x^2 dy + 2xy dx = 0$				$y = -1/(x^2)$
21	$y = 2xy' + y(y')^2$				$y^2 = c_1(x + \frac{1}{4} c_1)$
34	$y''+y = \tan x$				$y = -\cos x \ln(\sec x + \tan x)$
41	$(y')^2 = 9 xy$				(0, x < 0)
					$y = \begin{cases} x^3 & x \ge 0 \end{cases}$
42	y'' - 5y' + 6y = 0				$y = e^{mx}$ for some m
43	$x^2 y'' - y = 0$				$y = x^m$ for some m

Type of Solutions of ODE

	Туре	Explanation	Examples
1	Explicit	Dependent Variable is Expressed Only in	Q. 15, 19, 34, 41, 42, 43 have
	Solution	terms of Independent Variable, i.e.	Explicit Solutions on Intervals with
		$y=\Box(x), x \in I$	some Condition (Can you find it?)
2	Trivial	Solution: y = 0 on some interval I	i. Q. 21, 41-43 : Trivial Solution on R .
	Solution	[Note: Not Every ODE has a Trivial Sol.]	ii. Q.19 : Trivial Solution on any
			interval not containing 0.
			iii.Q. 15, 34 : No Trivial Solution.
3	Implicit	A Solution of the Form : $G(x, y) = 0$ on an	i. Q. 21: The solution is Implicit.
	Solution	Interval I where at least One Function	
		a) $y=\Box(x)$ satisfies the ODE	
		b) $y=\Box(x)$ is an implicit function of x.	

ii. Integral Curve: Graph of Solution 1. i. Integral of ODE: Solution of ODE 2. One-Parameter Family of Solutions: A Solution G(x,y,c)=0 of 1st Order ODE F(x,y,y')=0[Note: The solution contains One Parameter c, the constant due to one Integration] 3. <u>**n-Parameter Family of Solutions:** $G(x,y,c_1,...,c_n)=0$ for nth Order ODE $F(x,y,y',...,y^{(n)})=0$ </u> 4. Particular Solution: A Solution of ODE that is free of Arbitrary Parameter 5. Piecewise-Defined Solution: A Particular Solution of ODE in the Form of Piecewise-Defined Function which can not be obtained from the Parametric Family of Solutions. 6. Singular Solution: A Solution of ODE that cannot be obtained from the Parametric Family of Solutions simply by the replacement of the Parameter(s) with constant(s).

Example: i. $y = (x^2/4 + c)^2$ is a one-parameter family of Solutions for the ODE $y' = x\sqrt{y}$.

ii. y = 0 is also a solution of the same ODE. But it can not be obtained from $y = (x^2/4 + c)^2$