King Fahd University of Petroleum and Minerals College of Sciences, Prep-Year Math Program

Code 001

MATH 001, Final Exam
Second Semester Term(012)
Saturday, May 25, 2002
Time Allowed: 150 Minutes

STUDENT NAME:
ID #:
SECTION #:

Important Instructions

This Exam consists of 28 Multiple Choice Questions

Bubble the Answers on the OMR Sheet.

Looking around or making an attempt of cheating may cause your expulsion from the Place of Exam.

- 1. Use a <u>Clean Eraser</u> for your Answer Sheet. Do not use the eraser attached to the pencil.
- 2. Write your name and ID number on the examination paper
- Match the test Code Number already bubbled in your answer sheet with the Test Code Number printed on your question paper.
- 4. When erasing a bubble, make sure that you do not leave any trace of pencilling.

]

Code 001

1. If the sum of the two roots of a quadratic equation is $\frac{7}{2}$ and the product of the two roots is -15, then the quadratic equation is:

(a)
$$2x^2 + 7x - 30 = 0$$

(b)
$$2x^2 - 7x - 30 = 0$$

(c)
$$2x^2 + 7x + 30 = 0$$

(d)
$$2x^2 - 23x + 105 = 0$$

(e)
$$2x^2 - 23x - 105 = 0$$

2. The product of all the solutions of the equation

$$(3x-5)^{\frac{2}{3}} + 6(3x-5)^{\frac{1}{3}} = -8$$
 is equal to:

- (a) $\frac{53}{4}$
- (b) $\frac{-27}{4}$
- $(c)\frac{17}{3}$
- $(d)\,\frac{59}{3}$
- (e) $\frac{-29}{3}$

Code 001

3. The solution set of the inequality $|x^2 + 7x + 11| \ge 1$, in interval notation is:

(a)
$$\left(-\infty, -5\right] \bigcup \left[-4, -3\right] \bigcup \left[-2, \infty\right)$$

$$(b)(-\infty, -5] \bigcup [-2, \infty)$$

$$(c)[-2, \infty)$$

$$(c)[-2,\infty)$$

(d)
$$[-4,-3]$$
 $\bigcup (-2,\infty)$

(e)
$$(-\infty, -5]$$
 $(-4, \infty)$

4. The length L of a rectangle is 3 feet less than twice its width W. If the perimeter P of the rectangle is 174 feet, then the length L is equal to:

- (a) 30 feet
- (b) 57 feet
- (c) 60 feet
- (d) 33 feet
- (e) 63 feet

3

Code 001

5. The standard form of an equation of a circle that is tangent to both axes, and has its center in the third quadrant, and has a radius $\sqrt{5}$ is given by:

(a)
$$(x+\sqrt{5})^2 + (y-\sqrt{5})^2 = \sqrt{5}$$

(b)
$$\left(x - \sqrt{5}\right)^2 + \left(y + \sqrt{5}\right)^2 = 5$$

(c)
$$\left(x + \sqrt{5}\right)^2 + \left(y + \sqrt{5}\right)^2 = 5$$

$$(\vec{a}) \left(x - \sqrt{5} \right)^2 + \left(y - \sqrt{5} \right)^2 = 5$$

(e)
$$(x-\sqrt{5})^2 + (y-\sqrt{5})^2 = \sqrt{5}$$

6. A ball is thrown directly upward and the height function is given by the equation

$$h(t) = -16t^2 + 80t + 32$$

where t is time in seconds. The time interval in seconds for which the ball will be more than 96 feet above the ground is:

- (a)(2,8)
- (b)(2,5)
- (c)(3,6)
- (d)(4,8)
- (e) (1,4)

4

Code 001

7. If $f(x) = x^2 - 4x$ for $x \ge 2$, then $f^{-1}(x)$ and its domain D are given by:

(a)
$$f^{-1}(x) = -2 - \sqrt{x+4}$$
 and $D = [-2, \infty)$

(b)
$$f^{-1}(x) = -4 + \sqrt{x+4}$$
 and $D = [-4, \infty)$

(c)
$$f^{-1}(x) = 2 \pm \sqrt{x+4}$$
 and $D = [2, \infty)$

(d)
$$f^{-1}(x) = 2 - \sqrt{x+4}$$
 and $D = [4, \infty)$

(e)
$$f^{-1}(x) = 2 + \sqrt{x+4}$$
 and $D = [-4, \infty)$

8. The largest negative integer that is a lower bound for the real zeros of $f(x) = x^5 + 7x^2 - x + 3$ is:

- (a) -2
- (b) -5
- (c) -4
- (d) -3
- (e) →I

Code 001

9. If $f(x) = -x^2 + 4$, then f is increasing on the interval:

- (a) $(-\infty,2)$
- (b) $(-\infty,0)$
- (c) $(0,\infty)$
- (d)(-2,2)
- (ε) $(2,\infty)$

10. The graph of the equation $x^2 = |x - y^3|$ is symmetric with respect to:

- (a) y-axis only
- (b) x-axis only
- (c) origin only
- (d) x-axis and origin
- (e) y-axis and origin

б

Code 001

- 11. The graph of $g(x) = \sqrt{-x-1} + 2$ could be obtained from the graph of $f(x) = \sqrt{x}$ by:
- (a) translating I unit right, 2 units up and reflecting across the y-axis
- (b) translating 1 unit left, 2 units up and reflecting across the x-axis
- (c) translating 2 units left, I unit down and reflecting across the y-axis
- (d) translating 1 unit left, 2 units up and reflecting across the y-axis
- (e) translating I unit left, 2 units down and reflecting across the x-axis

12. Which one of the following functions does not have a horizontal asymptote?

(a)
$$f(x) = \frac{(x-5)(x-2)}{x^3-8}$$

$$(b) \quad f(x) = \frac{2x - 7}{x + 3}$$

(c)
$$f(x) = \frac{1}{(x-2)^2}$$

$$(d) \quad f(x) = \frac{3x}{x^2 - 9}$$

(e)
$$f(x) = \frac{x^2 + 2x}{2x - 1}$$

7

Code 001

13. The graph of the function

$$f(x) = \frac{x^3 - 4x^2 + 3x}{x^2 - 1}$$
 has:

- (a) only one vertical asymptote given by x = -1
- (b) only one vertical asymptote given by x = 1
- (c) two vertical asymptotes given by x = -1 and x = 1
- (d) a slant asymptote given by y = x
- (e) three x-intercepts

14. Let

$$f(x) = \begin{cases} x^2 - 2 & \text{if} \quad x < 1 \\ x + 2 & \text{if} \quad x \ge 1 \end{cases}$$

If -10 < k < -5 then f(-k) + f(k) is equal to:

(a)
$$-k^2-k-4$$

(b)
$$k^2 - k - 4$$

(c)
$$k^2 + k + 4$$

$$(d) k^2 - k$$

(e)
$$k-k^2$$

8

Code 001

15. If i is a zero of $f(x) = x^4 - x^5 + 5x^2 - x - 6$, then the sum of all its real zeros is:

- (a) 1
- (b) 5
- (c) -5
- (*d*) 0
- (e) -1

16. The polynomial $p(x) = -2x^3 + 5x^2 - 4x + 12$ has a real zero between:

- (a) 2 and 3
- (b) 1 and 2
- (c) 0 and 1
- (d) ~ 1 and 0
- (e) 1 and -2

9

Code 001

17. A polynomial of lowest degree with only real coefficients having -2i, i and 0 (multiplicity 2) as zeros is:

(a)
$$x^2(x^2-4)(x^2-1)$$

(b)
$$x^4 + 3x^3 + 4x^2$$

(c)
$$x^6 + 7x^4 + 4x^2$$

$$(d) x^6 + 5x^4 + 4x^2$$

(e)
$$x^6 + 8x^4 + 4x^2$$

- 18. The graph of the polynomial function $f(x) = 5x^5 4x^3 + 17x^2 + 2$ goes:
- (a) up to left and down to right with at most 4 turning points
- (b) down to left and down to right with at most 1 turning points
- (c) down to left and up to right with at most 4 turning points
- (d) up to left and up to right with at most 2 turning points
- (e) down to left and up to right with at most 5 turning points

10

Code 001

19. Which one of the following is a polynomial?

(a)
$$\frac{x+3}{x^2+x+1}$$

(b) $x^3+3x^{-1}+2$
(c) 5
(d) $\sqrt{x^2+x+4}$

(b)
$$x^3 + 3x^{-1} + 3$$

(d)
$$\sqrt{x^2 + x + 4}$$

(e)
$$x^{\frac{7}{3}} + 5x^{\frac{1}{6}} - 2$$

20. Which one of the following statements is FALSE?

- (a) If r is a real number, then $\sqrt{r^2} = r$
- (b) The set of rational numbers is commutative under multiplication
- (c) The set of irrational numbers is not closed under addition
- (d) For any real numbers a and b , $\left|a+b\right| \leq \left|a\right| + \left|b\right|$
- (e) 1 is the only positive integer that is not prime and not composite

11

Code 001

21. The expression $\frac{(2x^{-2}y^3)^{-2}(-4x^4y^{-1})^3}{-8x^{-2}y^2}$ simplifies to:

- (a) $\frac{-2x^{12}}{y^{11}}$
- (b) $\frac{x^{10}}{v^5}$
- (c) $\frac{2x^{18}}{y^{11}}$
- $(d) \ \frac{-2x^{13}}{v^{10}}$
- (e) $\frac{3x^{-13}}{y^{-11}}$

22. The solution set of the equation

$$\frac{4x-3}{2x} = \frac{2x-4}{x-2}$$

contains:

- (a) two positive integers
- (b) one positive integer
- (c) one negative integer
- (d) no real number
- (e) two negative integers

12

Code 001

23. If $z = (5-3i)(-2-4i) + \sqrt{-1} \sqrt{-4}$ then the conjugate \overline{z} is:

- (a) 2-14i
- (b) $-24 \div 14i$
- (c) 24-14i
- (d) -24 + 26i
- (e) 18 + 14i

24. The following rational expression

$$\frac{x^2 + 3x - 10}{(x+3)(x-2)}$$
 is equal to:
$$\frac{(x+5)(x-6)}{2x^2 - 15x + 18}$$

- (a) 3x 2
- (b) $\frac{2x+3}{x+3}$
- (c) $-\frac{2x+3}{x+3}$
- (d) $\frac{x+3}{2x-3}$
- (e) $\frac{2x-3}{x+3}$

13

Code 001

- **25.** The polynomial $p(x) = 5x^6 + 2x^2 + 4$ has:
- (a) no rational zeros
- (b) six rational zeros
- (c) two rational zeros and four irrational zeros
- (d) two rational zeros and four nonreal complex zeros
- (e) four rational zeros and two irrational zeros

26. If $p(x) = 5x^{48} + 6x^{10} - 5x + 7$ is divided by (x - i), then the remainder is:

- (a)-13- i
- (b) 6 - 5i
- (c) 6 + 5i
- (d) 18**~**5i
- (e) 18+5i

14

Code 001

- 27. Which one of the following statements is FALSE?
- (a) The slope of a horizontal line is zero.
- (b) The slope m of the line passing through the points (x_1, y_1) and (x_2, y_2) is given by

$$m = \frac{y_2 - y_1}{x_1 - x_2}, \quad x_2 \neq x_1$$

- (c) The slope of a vertical line is undefined.
- (d) Parallel lines have same slopes.
- (e) Two non-vertical lines are perpendicular if slopes are negative reciprocal of each other.

28. If
$$f(x) = \sqrt{16 - x^2}$$
 and $g(x) = x^2 - 7x + 10$, then the domain of $\left(\frac{f}{g}\right)(x)$ is equal to:

- (a) $[-4,-2) \cup (-2,4]$
- (b) $(-4,2) \cup (2,4)$
- $(c)[-4,2)\cup(2,4]$
- (d) $(-\infty, -4] \cup [-4, \infty)$
- (e)(2,4]