King Fahd University of Petroleum and Minerals College of Sciences, Prep-Year Math Program

Code 002

Math 001, Final Exam
Term (001)
Wednesday, January 10, 2001
12:30 - 2:45 p.m.

Code 002

STUDENT NAME:	
ID #:	SECTION #:

Important Instructions

Use only 6 Digits I.D. #: i.e. Remove two zeros from 2000 of your ID# (Example: ID# 20006587 should be bubbled as 206587)

Do not put any mark on a choice of any answer on the Exam Paper

- 1. All types of Calculators, Pagers or Telephones are not allowed during the examination.
- 2. Use an HB 2.5 pencil. Any mistake in bubbling your ID number will cost you one grade point.
- 3. Use a good eraser. Do not use the eraser attached to the pencil.
- 4. Write your name, ID number and Mathematics Section number on the examination paper and in the upper left corner of the answer sheet.
- When bubbling your ID number and Math Section number, be sure that bubbles match with the number that you write.
- The test Code Number is already typed and bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When erasing a bubble, make sure that you do not leave any trace of pencilling.
- 8. Check that the exam paper has 26 questions.

Page 1 of 13

CODE 002

- 1. One factor of the expression $64 + (x-3)^3$ is:
 - (a) $x^2 2x + 13$
 - (b) $x^2 10x + 37$
 - (c) $x^2 6x + 37$
 - (d) $x^2 10x + 13$
 - (e) $x^2 + 6x + 37$

- 2. Which one of the following statements is <u>TRUE</u>?
 - (a) The y-intercept of line 3x 4y = -20 is -5.
 - (b) The line 6y = -5x does not pass through the origin.
 - (c) The midpoint of (2a + 1, 2b 1) and (1, -1) is (a, b).
 - (d) The slope of a horizontal line is undefined.
 - (e) The points (-2,6), (8,0) and (18,-6) lie on the same line.

- 3. If the distance between the center of the circle $x^2 + y^2 2y = 5$ and the vertex of the parabola $x = -5y^2 + m$ is $\sqrt{10}$, then m is equal to:
 - (a) ± 3
 - (b) ± 10
 - (c) ±8
 - (d) ± 7
 - (e) ± 5

4. The vertices and the equations of the asymptotes of the hyperbola $4x^2 - 9y^2 = 36$, respectively, are:

(a)
$$(0,\pm 3)$$
, $y = \pm \frac{3}{2}x$

(b)
$$(\pm 2,0)$$
, $y=\pm \frac{3}{2}x$

(c)
$$(0, \pm 2), y = \pm \frac{2}{3}x$$

(d)
$$(\pm 3, 0)$$
, $y = \pm \frac{2}{3}x$

(e)
$$(9,4), y=\pm \frac{4}{9}x$$

Page 3 of 13

CODE 002

- 5. The graph of the equation $12x^2 + 72x + 72 = 9y^2 + 72y$ represents:
 - (a) an ellipse with center (3,4)
 - (b) an ellipse with center (-3, -4)
 - (c) a hyperbola with center (-3, -4)
 - (d) a hyperbola with center (3,4)
 - (e) a parabola with vertex (3,4)

- 6. The remainder is zero when $P(x) = x^7 + 30x^2 + K$ is divided by x + 2, then K is equal to:
 - (a) 248
 - (b) 28
 - (c) 68
 - (d) 78
 - (e) 8

7. If the discriminant of the quadratic equation

$$x^2 + 4kx - 5 = x$$

is 29 then k is equal to:

- (a) $1 \text{ or } -\frac{1}{2}$
- (b) -1 or 2
- (c) 1 only
- (d) -1 only
- (e) 1 or $-\frac{1}{4}$

- 8. The sum of the solutions of $\frac{9}{(r-2)^2} = \frac{11}{r-2} 2$ is:
 - (a) $\frac{13}{5}$
 - (b) $\frac{7}{2}$
 - (c) $\frac{12}{7}$
 - (d) $\frac{11}{5}$
 - (e) $\frac{19}{2}$

Page 5 of 13

9. If $g(x) = x^2 - 1$ and $f(x) = \sqrt{x - 1}$, then the composition function $g \circ f$ and the domain D are given by:

(a)
$$(g \circ f)(x) = x - 2$$
, $D = (-\infty, \infty)$

(b)
$$(g \circ f)(x) = x - 2$$
, $D = [1, \infty)$

(c)
$$(g \circ f)(x) = x$$
, $D = (-\infty, \infty)$

(d)
$$(g \circ f)(x) = \sqrt{x^2 - 2}, D = (-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty)$$

(e)
$$(g \circ f)(x) = \sqrt{x^2 - 2}$$
, $D = [1, \infty)$

- 10. If the line $\frac{1}{2}kx + 3y 7 = 0$ is perpendicular to the line passing through $\left(1, -\frac{1}{2}\right)$ and (-2, -5) then k is equal to:
 - (a) -1
 - (b) $\frac{1}{2}$
 - (c) $\frac{3}{4}$
 - (d) 4
 - (e) -3

11. If the graph of $y = 2x^2 + 3x - 1$ is translated 1 unit to the left and 3 units upward, then the equation of the new graph is:

(a)
$$y = 2x^2 - x - 5$$

(b)
$$y = 2x^2 + 7x + 7$$

(c)
$$y = 2x^2 + 6x - 5$$

(d)
$$y = 2x^2 + 5x - 4$$

(e)
$$y = 2x^2 + 3x + 5$$

12. The graph of $x = \frac{\sqrt{25 - 16y^2}}{2}$ is:

Page 7 of 13

CODE 002

13. If 1 < x < 2 then $\left| \frac{x-6}{|x-1|+|x-2|} \right|$ is equal to:

- (a) x 6
- (c) $\frac{x-6}{3-2x}$
- (d) $\frac{x+6}{2x+3}$
 - (e) 6 x

14. If the shorter sides of a right triangle have lengths K and 2K+2 and if the hypotenuse has length K+8, then the value of 3K+1 is equal to:

- (a) 10
- (b) 46
- (c) 16
- (d)
- (e) -8

1-2K+2 (K+8)=K+2K+2

15. The expression
$$\left(x-1-\frac{6}{x}\right)\div\left(1+\frac{2}{x}-\frac{15}{x^2}\right)$$
 simplifies to:

(a)
$$\frac{x(x+2)}{(x+5)}$$

(b)
$$\frac{x+5}{x+2}$$

(c)
$$\frac{x+2}{x+5}$$

(d)
$$\frac{5}{2}$$

(e)
$$\frac{x(x+5)}{(x+2)}$$

16. The expression
$$\frac{\sqrt{3} + 2\sqrt{2}}{3\sqrt{2} + 2\sqrt{3}}$$
 is equal to:

- (a) 1
- (b) $\sqrt{6}$
- (c) $i \frac{\sqrt{6}}{6}$
- (d) $\frac{\sqrt{6}}{6}$
- (e) 6

Page 9 of 13

CODE 002

17. If 1 - i is a zero of $x^4 - 7x^3 + 18x^2 - 22x + A$ then A is equal to:

- (a) -12
- (b) 12
- (c) $\frac{1}{12}$
- (d) 0
- (e) $-\frac{1}{12}$

18. One of the x-intercepts of the graph of the function $f(x) = 3x^2 + Kx - 4$ is 4. Then the second x-intercept is equal to:

- (a) -4
- (b) 11
- (c) -11
- (d) $-\frac{1}{3}$
- (e) $\frac{1}{3}$

- 19. If a rock is thrown upward from the ground with an initial velocity of 48 feet per second, the distance S in feet of the rock from the ground after t seconds is $S=48t-16t^2$. The maximum height the rock can reach is:
 - (a) 36 feet
 - (b) 24 feet
 - (c) 48 feet
 - (d) 16 feet
 - (e) 52 feet

- 20. If a=3 and b=-5 then $\frac{b-a\left(2-\frac{b-3}{b-7}\right)}{(b-a)\left(\frac{4a}{-b-1}\right)}$ is equal to:
 - (a) $-\frac{9}{16}$
 - (b) $-\frac{4}{9}$
 - (c) $\frac{3}{8}$
 - (d) 1
 - (e) -1

Page 11 of 13

- 21. If $z = \left(\frac{i}{1-i}\right)^2$, then $z + \overline{z} =$
 - (a) $-\frac{1}{2}$
 - (b) 0
 - (c) $\frac{1}{2}$
 - (d) 2
 - (e) -2

- 22. The solution set of the inequality $4x^3 + 7x^2 \ge 2x$, in interval notation, is:
 - (a) $[-2,0] \cup \left(\frac{1}{4},+\infty\right)$
 - (b) $\left(-\infty, -2\right] \cup \left[0, \frac{1}{4}\right]$
 - (c) $(-\infty, +\infty)$
 - (d) $(-\infty, -2] \cup [0, +\infty)$
 - (e) $[-2,0] \cup \left[\frac{1}{4},+\infty\right)$

Page 12 of 13

23. The domain D and the range R of the function y = |x + 2| - 1 are given by:

(a)
$$D = [0, +\infty), R = [1, +\infty)$$

(b)
$$D = [-2, +\infty), R = [1, +\infty)$$

(c)
$$D = (-2, +\infty), R = [-1, +\infty)$$

(d)
$$D = (-\infty, +\infty), R = [-1, +\infty)$$

(e)
$$D = (-\infty, -2) \cup (-2, +\infty), R = (-\infty, -1]$$

24. Which one of the following pairs of functions are inverse of each other?

(a)
$$f(x) = x^3 - 2$$
; $g(x) = \sqrt[3]{x+2}$

(b)
$$f(x) = x^2$$
; $g(x) = \sqrt{x}$

(c)
$$f(x) = \frac{x}{x-1}$$
; $g(x) = \frac{x-1}{x}$

(d)
$$f(x) = 2x - 1$$
; $g(x) = \frac{1}{2}x - 1$

(e)
$$f(x) = |x|$$
; $g(x) = |x|$

- 25. The <u>sum</u> of all solutions of the equation $\frac{|2x-5|}{|x+2|}=1$ is equal to:
 - (a) 3
 - (b) $\frac{-14}{3}$
 - (c) $\frac{28}{3}$
 - (d) 6
 - (e) 8

- 26. The domain D and the range R of the function $f(x) = \frac{\sqrt{4-9x^2}}{2}$ is given by:
 - (a) $D = \left[-\frac{2}{3}, \frac{2}{3} \right], R = [0, \infty)$
 - (b) $D = \left[\frac{2}{3}, \infty\right), R = [0, 1)$
 - (c) $D = \left(-\infty, -\frac{2}{3}\right], R = [0, \infty)$
 - (d) $D = \left[-\frac{2}{3}, \frac{2}{3} \right], R = [0, 1]$
 - (e) $D = \left[-\frac{2}{3}, \frac{2}{3} \right], R = (-\infty, 0]$