Entering Matrices

· Dürer’s Matrix

[image: image1.png]

· Rules for entering a matrix:

· Separate the elements of a row with blanks or commas.

· Use a semicolon, ; , to indicate the end of each row.

· Surround the entire list of elements with square brackets, [].

To enter Dürer's matrix, type

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB responds with

A =

 16 3 2 13

 5 10 11 8

 9 6 7 12

 4 15 14 1

· Once you have entered the matrix, it is automatically remembered in the MATLAB workspace. You can refer to it simply as A.

sum, transpose, and diag
· Type

sum(A)

MATLAB replies with

ans =

 34 34 34 34

You have computed a row vector containing the sums of the columns of A.

· The transpose operation, '. The statement

A'

produces

ans =

 16 5 9 4

 3 10 6 15

 2 11 7 14

 13 8 12 1

And

sum(A')'

produces

ans =

 34

 34

 34

 34

· The diag function: The statement

diag(A)

produces

ans =

 16

 10

 7

 1

and

sum(diag(A))

produces

ans =

 34

Subscripts
· The element in row i and column j of A is denoted by A(i,j). Type A(1,4) + A(2,4) + A(3,4) + A(4,4)

This produces

ans =

 34

The Colon Operator
· The colon, :, is one of MATLAB's most important operators. It occurs in several different forms.

· The expression

1:10

produces

1 2 3 4 5 6 7 8 9 10

· To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

is

0 0.7854 1.5708 2.3562 3.1416

· Subscript expressions involving colons refer to portions of a matrix.

A(1:k,j)
is the first k elements of the jth column of A. Try

sum(A(1:4,4))

· The colon by itself refers to all the elements in a row or column of a matrix. Try
A(:,1)

A(2,:)

The magic Function
· MATLAB actually has a built-in function that creates magic squares of almost any size. The statement

B = magic(4)

gives

B =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

· Same as the one in the Dürer engraving except that the two middle columns are exchanged. Type
A = B(:,[1 3 2 4])

To get
A =

 16 3 2 13

 5 10 11 8

 9 6 7 12

 4 15 14 1

Expressions
· The building blocks of expressions are:

· Variables

· Numbers

· Operators

· Functions

Variables

· Variable names consist of a letter, followed by any number of letters, digits, or underscores. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its single element.

· MATLAB is case sensitive. A and a are not the same variable.

Numbers
· MATLAB uses

· conventional decimal notation, with an optional decimal point and leading plus or minus sign, for numbers.

· Scientific notation uses the letter e to specify a power-of-ten scale factor.

· Imaginary numbers use either i or j as a suffix.

3 -99 0.0001

9.6397238 1.60210e-20 6.02252e23

1i -3.14159j 3e5i

Operators
Expressions use familiar arithmetic operators and precedence rules.

	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Division

	\
	Left division (described in "Matrices and Linear Algebra" in Using MATLAB)

	^
	Power

	'
	Complex conjugate transpose

	()
	Specify evaluation order

Functions
· Standard functions such as

abs, sqrt, exp, and sin.
For a list of the elementary mathematical functions, type

help elfun

For a list of more advanced mathematical and matrix functions, type

help specfun

help elmat

· Several special functions provide values of useful constants.

	pi
	3.14159265...

	i
	Imaginary unit, [image: image2.png]

-1

	j
	Same as i

	eps
	Floating-point relative precision, 2-52

	realmin
	Smallest floating-point number, 2-1022

	realmax
	Largest floating-point number, (2-[image: image3.png]

)21023

	Inf
	Infinity

	NaN
	Not-a-number

· The function names are not reserved.
eps = 1.e-6

· The original function can be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a few more examples, and the resulting values.

rho = (1+sqrt(5))/2

rho =

 1.6180

a = abs(3+4i)

a =

 5

z = sqrt(besselk(4/3,rho-i))

z =

 0.3730+ 0.3214i

huge = exp(log(realmax))

huge =

 1.7977e+308

toobig = pi*huge

toobig =

 Inf

Working with Matrices
This section introduces you to other ways of creating matrices.

Generating Matrices
· MATLAB provides four functions that generate basic matrices.

	zeros
	All zeros

	ones
	All ones

	rand
	Uniformly distributed random elements

	randn
	Normally distributed random elements

Here are some examples.

Z = zeros(2,4)

Z =

 0 0 0 0

 0 0 0 0

F = 5*ones(3,3)

F =

 5 5 5

 5 5 5

 5 5 5

N = fix(10*rand(1,10))

N =

 4 9 4 4 8 5 2 6 8 0

R = randn(4,4)

R =

 1.0668 0.2944 -0.6918 -1.4410

 0.0593 -1.3362 0.8580 0.5711

 -0.0956 0.7143 1.2540 -0.3999

 -0.8323 1.6236 -1.5937 0.6900

M-Files
· M-files are text files containing MATLAB code.

· Use the MATLAB Editor or another text editor to create a file containing the same statements you would type at the MATLAB command line.

· Save the file under a name that ends in .m.

For example, create a file containing these five lines.

 A = [...

 16.0 3.0 2.0 13.0

 5.0 10.0 11.0 8.0

 9.0 6.0 7.0 12.0

 4.0 15.0 14.0 1.0];

Store the file under the name magik.m. Then the statement

Magik

in the command window

reads the file and creates a variable, A, containing our example matrix.

Concatenation
· Joining small matrices to make bigger ones.

B = [A A+32; A+48 A+16]

produces
B =

 16 3 2 13 48 35 34 45

 5 10 11 8 37 42 43 40

 9 6 7 12 41 38 39 44

 4 15 14 1 36 47 46 33

 64 51 50 61 32 19 18 29

 53 58 59 56 21 26 27 24

 57 54 55 60 25 22 23 28

 52 63 62 49 20 31 30 17

Deleting Rows and Columns
· Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =

 16 2 13

 5 11 8

 9 7 12

 4 14 1

X(1,2) = []

results in an error.

Linear Algebra
Here are some more operations that can be performed on matrices

· A + A'

ans =

 32 8 11 17

 8 20 17 23

 11 17 14 26

 17 23 26 2

· A'*A

ans =

 378 212 206 360

 212 370 368 206

 206 368 370 212

 360 206 212 378

· d = det(A)

d =

 0

· The reduced row echelon form of A is not the identity.

R = rref(A)

R =

 1 0 0 1

 0 1 0 -3

 0 0 1 3

 0 0 0 0

· X = inv(A)

you will get a warning message

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 1.175530e-017.

· The eigenvalues of the magic square are interesting.

e = eig(A)

e =

 34.0000

 8.0000

 0.0000

 -8.0000

· P = A/34

P =

 0.4706 0.0882 0.0588 0.3824

 0.1471 0.2941 0.3235 0.2353

 0.2647 0.1765 0.2059 0.3529

 0.1176 0.4412 0.4118 0.0294

· P^5

ans=

 0.2507 0.2495 0.2494 0.2504

 0.2497 0.2501 0.2502 0.2500

 0.2500 0.2498 0.2499 0.2503

 0.2496 0.2506 0.2505 0.2493

· Finally, the coefficients in the characteristic polynomial

poly(A)

are

 1 -34 -64 2176 0

i.e. [image: image4.png]

4 - 34[image: image5.png]

3 - 64[image: image6.png]

2 + 2176[image: image7.png]

Arrays
· When they are taken away from the world of linear algebra, matrices become two dimensional numeric arrays.

· Arithmetic operations on arrays are done element-by-element.

· This means that addition and subtraction are the same for arrays and matrices, but that multiplicative operations are different.

· MATLAB uses a dot, or decimal point, as part of the notation for multiplicative array operations.

The list of operators includes:

	+
	Addition

	-
	Subtraction

	.*
	Element-by-element multiplication

	./
	Element-by-element division

	.\
	Element-by-element left division

	.^
	Element-by-element power

	.'
	Unconjugated array transpose

example

A.*A

ans =

 256 9 4 169

 25 100 121 64

 81 36 49 144

 16 225 196 1

Scalar Expansion
· Matrices and scalars can be combined in several different ways.

· For example, a scalar is subtracted from a matrix by subtracting it from each element.

The average value of the elements in our magic square is 8.5, so

B = A - 8.5

B =

 7.5 -5.5 -6.5 4.5

 -3.5 1.5 2.5 -0.5

 0.5 -2.5 -1.5 3.5

 -4.5 6.5 5.5 -7.5

sum(B)

ans =

 0 0 0 0

· With scalar expansion, MATLAB assigns a specified scalar to all indices in a range.

B(1:2,2:3) = 0

zeros out a portion of B
B =

 7.5 0 0 4.5

 -3.5 0 0 -0.5

 0.5 -2.5 -1.5 3.5

 -4.5 6.5 5.5 -7.5

Logical Subscripting
· The logical vectors created from logical and relational operations can be used to reference subarrays.

· Suppose X is an ordinary matrix and L is a matrix of the same size that is the result of some logical operation. Then X(L) specifies the elements of X where the elements of L are nonzero.

Suppose you have the following set of data.

x =

 2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

x = x(finite(x))

x =

 2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

x = x(abs(x-mean(x)) <= 3*std(x))

x =

 2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

Logical Subscripting
Relational Operators < > <= >= == ~=

Relational operations

Syntax

A < B

A > B

A <= B

A >= B

A == B

A ~= B

Description

The relational operators are <, >, ==, and ~=. Relational operators perform

element-by-element comparisons between two arrays. They return an array of the

same size, with elements set to logical true (1) where the relation is true, and

elements set to logical false (0) where it is not.

The operators <, , >, and use only the real part of their operands for the

comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of dissimilar

length to be compared.

Examples

If one of the operands is a scalar and the other a matrix, the scalar expands to the

size of the matrix. For example, the two pairs of statements:

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]

X = 5*ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

ans =

 1 1 1

 1 1 0

 0 0 0

Logical Operators & | ~

Logical operations

Syntax

A & B

A | B

~A

Description

The symbols &, |, and ~ are the logical operators AND, OR, and NOT. They work

element-wise on arrays, with 0 representing logical false (F), and anything nonzero

representing logical true (T). The & operator does a logical AND, the| operator does

a logical OR, and ~A complements the elements of A. The function xor(A,B)

implements the exclusive OR operation. Truth tables for these operators and

functions follow.

	Inputs

	and

	or

	xor

	not

	A
	B
	A&B
	A|B
	xor(A,B)
	~A

	0
	0
	0
	0
	0
	1

	0
	1
	0
	1
	1
	1

	1
	0
	0
	1
	1
	0

	1
	1
	1
	1
	0
	0

The precedence for the logical operators with respect to each other is:

not has the highest precedence.

and and or have equal precedence, and are evaluated from left to right.

Remarks

The logical operators have M-file function equivalents, as shown:

and

A&B and(A,B)

or

A|B or(A,B)

not

~A not(A)

Precedence of & and | Operators

MATLAB always gives the & operator precedence over the | operator. Although

MATLAB typically evaluates expressions from left to right, the expression a|b&c is

evaluated as a|(b&c). It is a good idea to use parentheses to explicitly specify the

intended precedence of statements containing combinations of & and |.

