
1. (a) Identify the curve r = sec � tan � by changing to cartisian coordinates.
Solution:

r = sec � tan �

r cos � = tan �

x =
y

x
y = x2

The curve is a parabola.

(b) Find a polar equation, in simpli�ed form for the curve represented by the rectan-
gular equatoin x2 � y2 = 1:
Solution:

r2 cos2 � � r2 sin2 � = 1

r2
�
cos2 � � sin2 �

�
= 1

r2 cos 2� = 1

r2 = csc 2�:

2. Set up an integral to compute the area inside both of the curves r = sin 2�
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and r = sin �:

Solution:

To get the points of intersection:

sin 2� = sin �

2 sin � cos � = sin �

sin � = 0 or cos � =
1

2

� = 0 or � =
�
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The area is given by
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3. Find a vector that is orthogonal to the vector between the two points P (1;�1) ; Q (2; 3)
and has length 3.

Solution:

The vector
�!
PQ = h2� 1; 3 + 1i = h1; 4i : An orthogonal vector is h�4; 1i : A unit or-

thogonal vector is 1p
17
h1; 4i :An orthogonal vector of length 3 is 3p

17
h1; 4i =

D
3p
17
; 12p
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