1. (3points) Find the length of the curve $x = 1 + 3t^2$, $y = 4 + 2t^3$, $0 \le t \le 1$.

$$x' = 6t, \quad y' = 6t^2.$$

$$L = \int_0^1 \sqrt{36t^2 + 36t^4} dt = 6 \int_0^1 t\sqrt{1 + t^2} dt$$

put
$$u = 1 + t^2$$
, and $du = 2tdt$. Then

$$L = \frac{1}{2} \int_{1}^{2} \sqrt{u} du = \frac{2}{3} \sqrt{2} - \frac{1}{3}.$$

2. (4points) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the parametric curve $x = t + \ln t$, $y = t - \ln t$.

$$dy/dx = \frac{dy/dt}{dx/dt} = \frac{1 - \frac{1}{t}}{1 + \frac{1}{t}} = \frac{t - 1}{t + 1}.$$

$$d^2y/dx^2 = \frac{\left(1 + \frac{1}{t}\right)\frac{1}{t^2} + \frac{1}{t^2}\left(1 - \frac{1}{t}\right)}{\left(1 + \frac{1}{t}\right)^3} = \frac{2t}{(t+1)^3}.$$

3. (3points) Eleminate t to find the Cartesian equation of the curve $x = t^2 - 1, y = t^2 - 2t + 3, -1 \le t \le 0$.

From the equation for x, $t = -\sqrt{x+1}$ (observe that t is negative). Substituting into the equation for y we gat

$$y = x + 1 + 2\sqrt{x+1} + 3.$$