Physical Excursus – Strain Pt. 2: Uniaxial Stress, Shear Stress, WE in Anisotropic Solids

· The elastic constant ( (Poisson's ratio) describes the lateral elongation of a sample under uniaxial vertical compression:
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An example for the stress-strain curves for quartzite (composed mainly of quartz, 
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SiO

) under uniaxial compression (after Z.B. Bieniawski, Int.J.Rock.Mech.Mining Sci. 4 (1967): 407-423) is given below 
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· Shear Stress – Shear Strain: The following figure defines (in the 2-D case) the surface forces acting on a small volume element 
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 are normal stresses, 
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are shear stresses. The 2nd subscript of 
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 gives the direction of the force, the 1st subscript gives the direction of the normal to the surface upon which the force acts. 
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· The shear stresses tend to rotate the volume element. In the above figure e.g. the moment exerted by force 
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around the z axis is 
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. If  there is equilibrium (i.e. no rotation)
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 EMBED Equation.3  [image: image13.wmf](
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. Thus, in the 2-D case, if there is no rotation, the stress conditions are described by three values 
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· We have defined in last Excursus the normal component of strain 
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and the dilatation 
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. The strain components can be expressed in terms of the spatial rate of deformation of the volume element. First consider the 2-D case, and normal strains only: [image: image17.jpg]x'+5x’ x+8x
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The original rectangle pqrs deforms into the rectangle p'q'r's'. The corner p(x,y) moves to p'(x',y'). Define the deformation components
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. Using Taylor expansion:
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and recalling the definition of 
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. The dilatation becomes
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· In case of shear the rectangle distorts to a parallelogram (as the Fig. shows in 2-D): [image: image25.jpg]s
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The original angle at P changes as
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 that is the shear strain is the negative average of 
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 can be re-written in terms of partial derivatives
 as 
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. If there is no rotation, 
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· The Wave Equation for anisotropic media follows from Newton's 2nd Law applied to a small volume 
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  within the medium. Expressing forces acting upon the faces of 
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in terms of the stress tensor 
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  (Eq. 1) where ( is density, 
[image: image36.wmf](

)

3

2

1

,

,

u

u

u

u

=

 is the displacement vector, 
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is body force per unit volume, t time, 
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are Descartes coordinates. Repeated indices in an expression imply summation ("Einstein convention"). There are two groups of unknowns, the displacement field u and the stress tensor 
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. The WE must be supplemented with the generalized Hooke's Law:
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 (Eq. 2) where 
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is the 4th order stiffness tensor defining material properties, and 
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   (Eq. 3) is the strain tensor. Assuming the stiffness tensor 
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is constant in space and time, from Eqs. 1-3 we get the WE for anisotropic media: 
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 (Eq. 4). As we shall see, for special symmetry systems the matrix 
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contains fewer elements and Eq. 4 is more simple. 
· The Christoffel Equation for plane waves. In case of plane waves in anisotropic media we drop the body force f and use the linear WE 
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(Eq. 6). We look for harmonic wave trial-solutions of Eq. 6 in the form 
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 (Eq. 7), where 
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is the polarization vector, 
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is the unit vector orthogonal to the plane wavefront. Substituting the plane wave (Eq. 7) into the homogeneous WE (Eq. 6) we get the Christoffel equation for the velocity V and polarization vector U:
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(Eq. 8)
 where 
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(Eq.9) is the Christoffel matrix. It depends on the elastic properties of the medium, and on the direction of the wave propagation. Using the Kronecker symbol 
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 (Eq. 9), Eq. 8 becomes 
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 (Eq. 10), which is an eigenvalue-eigenvector problem for the three eigenvalues 
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and three eigenvectors 
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. The Christoffel matrix is positive definite
, i.e. its three eigenvalues are real and positive. Thus, in any direction 
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the waves can propagate with three different velocities (called 
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). Since the matrix G is real and symmetric, the polarization vectors corresponding to the three modes are always orthogonal to each other but in general not parallel with, or orthogonal to, the propagation direction 
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· In the most general case the stiffness tensor 
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could have 
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components. Due to the symmetry of the stress and strain tensors the indices i & j as well as k & l are interchangable: 
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. By  thermodynamic considerations
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. It is easy to check that the lowest possible case of symmetry is described by 21 stiffness elements. In the perfectly isotropic case there are only two elastic coefficients. The next figure
 shows the possible velocities (in km/sec) in a monocrystal of olivine 
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� See D.L. Turcotte & G. Schubert, Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley & Sons, NY, 1982. pp. 89-90. 


� See D.L. Turcotte & G. Schubert, Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley & Sons, NY, 1982. p. 90.


� As proved in M.J.P. Musgrave, Crystal Acoustics, Holden Day, 1970


� K. Aki & P.G. Richards, Quantitative SeismologyTheory and Methods. Vol. 1, Freeman & Co., 1980.


�  From M. Kumazawa & O.L. Anderson, "Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite". J. Geoph. Res. 74(1969): 5961-5972. 
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