Lecture 1 B. INTRODUCTION:  SEISMIC WAVE ABSORPTION

1.a. Hilbert Transform & the Analytic Signal. 

1.a.1. Instantaneous Amplitude, Frequency & Phase  Fourier Analysis is one of the most important tools of Signal Processing. For a seismic trace 
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 describes how the energy is distributed among the different spectral components over the whole history of the process. In seismic interpretation however we are looking for instantaneous, quick lateral changes, observed over small time windows. Such changes might occur in 

· Frequencies (in case, for example, of the thinning out of a sand lens;

· Amplitudes (due to a sudden change in reflectivity)

· Phase (if the reflection coefficient changes for example from r>0 to r<0 because of a sudden porosity change, or change in the pore filler
.
As already recognized 25 years ago
, the instantaneous properties (instantaneous amplitude 
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, instantaneous phase 
[image: image5.wmf]i

F

, instantaneous frequency 
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  of x(t) can be found by Hilbert Transform.
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We consider the observed seismic trace as the real part of a complex-valued analytical trace (analytical signal) h(t), where 
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In seismic processing y(t) is called the quadrature trace and, as we shall show, it can be uniquely determined from x(t) by means of the Hilbert Transform. From 
[image: image9.wmf])

(

&

)

(

t

y

t

x

the instantaneous attributes are computed as follows:
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The instantaneous attributes can be conveniently visualized using colored display.

1.a.2. The Hilbert Transform 

Recall that the Fourier Transform, and inverse Fourier Transform are defined as
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The impulse response of a physically realizable system is always causal: 
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 (Discussion: Difference between physically realizable and causal systems.) The Fourier Transform of the impulse response of a linear system is called the complex Transfer Function:
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The Hilbert Transform of a function  f(t) and its inverse transform are defined as 
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Notes 

a) Both integrals (1.5 & 1.6) are meant in the sense of the  Cauchy principal value. The Cauchy principal value of a finite integral of a function f about a point 
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      b) Taking the Fourier transform of Eq. (1.6) by means of the Convolution Theorem, and recalling that 
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 (i.e. +i for positive, and –i for negative frequencies), we see that in the spectrum of the Hilbert transform all  original cosine components are transformed into negative sines, and all sines into cosines.    

The analytic signal associated with a real function f(t) is the complex function 
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The instantaneous amplitude (envelope), instantaneous phase, and instantaneous frequency, of  f(t)  are:
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THEOREM: The complex Transfer Function of a casual system satisfies the dispersion relation between the imaginary and real parts of the transfer function:
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Proof
 Because of causality, 
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where H is the Heaviside step function, and g(t) is some arbitrary real-valued function. Write f(t) uniquely as the sum of its even and odd parts:
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As 
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Comparing this with 
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 we indeed get Eqs. (1.9-10).

Exercise 1.1.  Let the impulse response function of a causal system be
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a) What is the complex transfer function F(f)? 

b) Write up the dispersion  relation between 
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1. b. Viscoelasticity
 & the Quality Factor Q

In elementary Seismics, the materials are assumed linear elastic (stress & strain are linearly proportional). In linear viscoelastic  materials the stress-strain relation also depends on the rate of the application of stress, that is on the time derivatives. The three most important models of   linear viscoelasticity are
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                      Maxwell solid           (1.11.a)
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                    Voigt solid               (1.11.b)
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  Standard lin. solid   (1.11.c) 

Here 
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 are additional elastic moduli   and 
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  is viscosity. The standard linear solid is often represented with the "spring & dashpot system" whose displacement vs. force equation is the same as Eq. (1.11.c): [image: image37.jpg]



Exerciose 1.2.   Find the physical dimension of 
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 from any of the Eqs. (1.11) using the rule that in a physically meaningful equation only quantities of equal dimension can be added together. 

It can be shown that for a wave propagating in a viscoelastic solid the displacement is given by 
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and that stress and strain are out of phase:
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The ratio of stress-to-strain is the complex modulus, 
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The quality factor Q is a measure of how dissipative is the material. (The stronger is the dissipation, the smaller is Q.) It is defined in terms of the complex modulus as: 
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1. c. Some equivalent expressions for 
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If W is the peak strain energy, 
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In terms of the absorption coefficient 
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 in Eq. (13.12):
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where V is velocity, f is frequency.

In terms of the amplitude loss per cycle of an oscillatory signal with period T is:
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 is called logarithmic decrement). 

In terms of the phase delay between stress and strain (Eq. 1.13):
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1. d. Wave attenuation in the standard linear solid

In case of a simple sinusoid wave
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By Eq. (1.11.c) 
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 where the complex frequency-dependent modulus is:                               
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In the low-frequency- and high-frequency limits:
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Exercise 1.3. Derive Eq. (1.17) by Fourier-transforming Eq. (1.11.c) and using the rule 
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As both limits in (1.18) are frequency-independent real numbers, in these limiting cases we have elastic behavior. In between, the modulus can be written as
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Exercise. 1.4. Derive (1.19.b) & (1.19.c) from (1.19.a).

Putting these Eqs. in the defining equation (1.14) of the quality factor Q:
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The maximum attenuation occurs at the frequency 
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as schematically shown in the Figure
:
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1. e. Constant Q mechanism

It has been found experimentally
 over the frequency range of 
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that in rocks the absorption is a near-linear function of frequency: 
[image: image62.wmf]f

f

0

)

(

a

a

»

(however, this has never been proven theoretically!). Substituting to (1.15.b) we see that in this case
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If for 
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 we have a constant-Q mechanism,  then the complex modulus and Q are related as
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1. f. Velocity dispersion for the near-constant Q model

It can be proved
 that, in a nearly-constant-Q model and over a limited range of frequencies 
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Exercise 1. 5. Typical values for Q are:

	Lithology
	Q
	Range of 
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	Igneous rocks
	75-150
	

	Sedimentary rocks
	20-150
	

	Sedimentary rocks containing gas in their pores
	5-50
	


Complete the Table!

1. g. The Kramers-Kronig relation
 between velocity dispersion and Q
Suppose we have a viscoelastic relation between stress and strain in the form
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where r(t) is the relaxation function. Fourier transforming (13.24): 
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where 
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is the complex modulus. But r(t) is causal, that is the Hilbert transform theorem of causal functions gives
:
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Rewriting this in terms of the quality factor, 
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The Figure
 shows the schematic dispersion relations, for different viscoelastic models, computed from Eq, (1.27.b) and from measured velocity and attenuation values at 1 kHz & 1 MHz frequencies. Note that for all models 
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1.h. Estimation of  Q  by the spectral ratio method
If the amplitude spectrum of the propagating wave changes with distance as
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we can compare the amplitude spectra at different distances, and find Q from the slope of the logarithm of the ratio of the two amplitude spectra vs. frequency plot:
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(See the schematic Figure below. Note that we can only use sufficiently high frequencies for this analysis.).
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1. i. The power spectrum method Suppose we consider wavelets s(t) on a seismogram in two time-gates corresponding to depths 
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. In the two time-gates the signal spectra are
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where the factor 
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 corresponds to frequency independent losses (such as spherical divergence). The factor "2" in the exponent is due to the fact that the wave traversed the layer twice, in the 
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 directions. For a more stable spectral estimate we use the power spectrum
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where 
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 is the autocorrelation function of s(t). From (1.30 & 1.31) 
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The constant 
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 can be found from the assumption that 
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. Example: Power spectra above and below an oil deposit:
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The absorption coefficient is found from the slope, using  Eq. (1.32).

[image: image93.jpg]



� Based on: G. Mavko, T. Mukerji & J. Dvorkin, The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media. Cambridge University Press, Cambridge, 1998, 329; G. Korvin, Signal Processing for Earth Scientists. Lecture Notes of a Short Course, KFUPM, Earth Sci. Dept., Dhahran, March 16-27, 1996.


� See Topic 14.


� M.T. Taner, F. Koehler & R.E.  Sheriff, "Complex seismic trace analysis", Geophysics, 4(1979):  1041-1063.


� R.N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill Book Co., New York, 1978,  pp. 267-272.


� C. Zener, Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago, 1984. 


�  L. Knopoff, "Q". Rev. Geophys. 2(1964): 625-660. 


� C. Zener, Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago, 1984.


� Fig. 3.6.3 on G. Mavko, T. Mukerji & J. Dvorkin, The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media. Cambridge University Press, Cambridge, 1998, p. 74.


� P.B. Attewell & Y.V. Ramana "Wave attenuation and internal friction as functions of frequency in rocks". Geophysics 31(1966): 1049.


� E. Kjartanson, "Constant Q wave propagation and attenuation". J. Geophys. Res. 84(1979): 4737-4748.


� H.P. Liu, D.L. Anderson & H. Kanamori, "Velocity dispersion due to anelasticity: Implication for seismology and mantle composition." Geophys. J. Royal Astr. Soc. 47(1976): 41-58.


� H.A. Kramers, Nature 117(1926): 775; R. de L. Kronig, J. Opt. Soc. Amer. 121(1926): 547.


� T. Bourbié, O. Coussy & B. Zinszner, Acoustics of Porous Media, Gulf publishing Co., Houston, 1987.


�  N. Lucet, 1989, Ph. D. Dissertation, University of Paris.


� G. Korvin, Signal Processing for Earth Scientists. Lecture Notes of a Short Course, KFUPM, Earth Sci. Dept., Dhahran, March 16-27, 1996.








PAGE  
1

_1164798105.unknown

_1164810698.unknown

_1164814539.unknown

_1164879846.unknown

_1164880371.unknown

_1164880942.unknown

_1164882376.unknown

_1297869611.unknown

_1164881836.unknown

_1164880788.unknown

_1164879937.unknown

_1164816093.unknown

_1164816544.unknown

_1164816662.unknown

_1164817010.unknown

_1164817353.unknown

_1164816585.unknown

_1164816383.unknown

_1164815316.unknown

_1164815904.unknown

_1164814590.unknown

_1164812232.unknown

_1164813337.unknown

_1164813483.unknown

_1164813007.unknown

_1164811844.unknown

_1164812129.unknown

_1164810737.unknown

_1164805085.unknown

_1164807213.unknown

_1164809035.unknown

_1164810663.unknown

_1164807683.unknown

_1164805411.unknown

_1164805664.unknown

_1164805300.unknown

_1164803272.unknown

_1164803892.unknown

_1164804835.unknown

_1164803608.unknown

_1164799515.unknown

_1164802518.unknown

_1164802854.unknown

_1164801947.unknown

_1164798396.unknown

_1164798629.unknown

_1164733928.unknown

_1164736673.unknown

_1164737181.unknown

_1164739475.unknown

_1164739999.unknown

_1164741405.unknown

_1164741158.unknown

_1164739982.unknown

_1164737813.unknown

_1164737964.unknown

_1164737613.unknown

_1164736844.unknown

_1164737092.unknown

_1164736791.unknown

_1164734944.unknown

_1164735891.unknown

_1164736494.unknown

_1164735561.unknown

_1164734331.unknown

_1164734876.unknown

_1164734145.unknown

_1164644199.unknown

_1164647857.unknown

_1164649401.unknown

_1164649602.unknown

_1164648717.unknown

_1164646403.unknown

_1164647037.unknown

_1164647588.unknown

_1164646749.unknown

_1164645256.unknown

_1164643328.unknown

_1164643748.unknown

_1164644081.unknown

_1164643388.unknown

_1164642107.unknown

_1164642150.unknown

_1164642062.unknown

