1 Spaces with differentiable norms

Recall that a function $f: X \to \mathbb{R}$ is called Fréchet differentiable at $x \in X$ if there exists a continuous linear functional, denoted f'(x), such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - \langle f'(x), h \rangle}{\|h\|} = 0.$$
 (1)

Definition 1 A Banach space X is called Fréchet smooth if for each $0 \neq x \in X$ there exists an $x^* \in X^*$ (that may depend on x) such that

$$\lim_{h \to 0} \frac{\|x+h\| - \|x\| - \langle x^*, h \rangle}{\|h\|} = 0.$$
 (2)

• The norm on X cannot be differentiable at 0. This means that the limit (2) cannot exist at 0, for otherwise we have

$$\lim_{h \to 0} \frac{\|h\| - \langle x^*, h \rangle}{\|h\|} = 0,$$

which means $x^* \neq 0$. But then taking a sequence $h_n \to 0$ (and hence, $-h_n \to 0$) we get

$$\left\langle x^*, \frac{h_n}{\|h_n\|} \right\rangle \to \pm 1$$

which is impossible.

Lemma 2 In any Banach space with norm $\|\cdot\|$, $\|\cdot\|^2$ is differentiable at x = 0 with derivative 0.

Proof. This follows immediately from (1) by subistituting $f(x) := ||x||^2$ and f'(0) = 0.

Lemma 3 Suppose X is Fréchet smooth. Let $0 \neq x \in X$ and let $x^* = \partial ||x||$ Then $||x^*|| = 1$.

Proof. Let $\varepsilon > 0$. There exists a $\delta > 0$ such that $h \in \delta B \Longrightarrow$

$$\begin{aligned} |\langle x^*, h \rangle| &\leq |||x+h|| - ||x||| + \varepsilon ||h|| \\ &\leq ||h|| (1+\varepsilon) \,. \end{aligned}$$

Therefore,

$$\|x^*\| \le 1.$$

On the other hand, taking h = tx in (2) gives

$$1 - \left\langle x^*, \frac{x}{\|x\|} \right\rangle = 0.$$

Therefore,

$$\|x^*\| \ge 1.$$

Hence, $||x^*|| = 1$.

• Observe that the derivative functional x^* acheives its norm at the point $\frac{x}{\|x\|}$.

2 The subderivative of a norm

Theorem 4 Let $\overline{x} \in X$. Then $\partial \|\cdot - \overline{x}\|(\overline{x}) = \mathbf{B}^*$.

Proof. Since $x \mapsto ||x - \overline{x}||$ is convex and continuous,

$$\partial \|\cdot - \overline{x}\| = \widehat{\partial} \|\cdot - \overline{x}\|.$$

Let $x^* \in \partial \|\cdot - \overline{x}\| (\overline{x})$. Then

$$\underbrace{\lim_{x \to \overline{x}} \frac{\|x - \overline{x}\| - \langle x^*, x - \overline{x} \rangle}{\|x - \overline{x}\|} \ge 0.$$

It follows that for any $\varepsilon > 0$ ther exists a $\delta > 0$ such that for all $x \in \overline{x} + \delta \mathbf{B}$,

$$\frac{\|x - \overline{x}\| - \langle x^*, x - \overline{x} \rangle}{\|x - \overline{x}\|} \ge -\varepsilon.$$

Then

$$\left\langle x^*, \frac{x-\overline{x}}{\|x-\overline{x}\|} \right\rangle \le 1+\varepsilon.$$

Therefore,

$$\|x^*\| \le 1 + \varepsilon$$

and since ε is arbitrary, $||x^*|| \leq 1$.

On the other hand, assume that $x^* \in \mathbf{B}^*$. Then

$$\frac{\|x-\overline{x}\| - \langle x^*, x-\overline{x} \rangle}{\|x-\overline{x}\|} = 1 - \left\langle x^*, \frac{x-\overline{x}}{\|x-\overline{x}\|} \right\rangle \ge 1 - \|x^*\| \ge 0.$$

Therefore,

$$\lim_{x \to \overline{x}} \frac{\|x - \overline{x}\| - \langle x^*, x - \overline{x} \rangle}{\|x - \overline{x}\|} \ge 0$$

and $x^* \in \partial \|x - \overline{x}\|(\overline{x})$.

Theorem 5 Let $0 \neq \overline{x} \in X$. Then

$$\phi \neq \partial \left\| \cdot \right\| (\overline{x}) = \left\{ x^* \in X^* : \left\| x^* \right\| = 1, \left\langle x^*, \overline{x} \right\rangle = \left\| \overline{x} \right\| \right\}.$$

Proof. Since $x \mapsto ||x||$ is convex and continuous,

$$\partial \left\|\cdot\right\| = \widehat{\partial} \left\|\cdot\right\|$$

Let $0 \neq \overline{x} \in X$ and notice that, since epi $\|\cdot\|$ is convex,

$$\widehat{\partial} \| \cdot \| (\overline{x}) = \{ x^* \in X^* : \langle x^*, x - \overline{x} \rangle - (\|x\| - \|\overline{x}\|) \le 0 \ \forall x \in X \}.$$

Let $x^* \in X^*$ be such that $||x^*|| = 1$ and $\langle x^*, \overline{x} \rangle = ||\overline{x}||$ (one exists by the Hahn-Banach theorem). Then, for any $x \in X$,

$$\langle x^*, x - \overline{x} \rangle - (\|x\| - \|\overline{x}\|) = \langle x^*, x \rangle - \|x\| \le \|x^*\| \|x\| - \|x\| = 0.$$

Thus, $x^* \in \widehat{\partial} \|\cdot\|(\overline{x}), \partial \|\cdot\|(\overline{x}) \neq \phi$ and $\partial \|\cdot\|(\overline{x}) \subset \{x^* \in X^* : \|x^*\| = 1, \langle x^*, \overline{x} \rangle = \|\overline{x}\|\}$. On the other hand, assume $x^* \in \widehat{\partial} \|\cdot\|(\overline{x})$. Then

$$\langle x^*, x - \overline{x} \rangle - (\|x\| - \|\overline{x}\|) \le 0 \ \forall x \in X$$

Rearranginge, we get

$$\begin{aligned} \langle x^*, x - \overline{x} \rangle &\leq & \|x\| - \|\overline{x}\| \\ &\leq & \|x - \overline{x}\| \, \forall x \in X, \end{aligned}$$

which means that $||x^*|| \leq 1$. Furthermore, we then have

$$\langle x^*, x \rangle - \|x\| \le \langle x^*, \overline{x} \rangle - \|\overline{x}\| \le 0 \ \forall x \in X.$$

we claim that this implies that $\langle x^*, \overline{x} \rangle - \|\overline{x}\| = 0$. Otherwise, $\langle x^*, \overline{x} \rangle - \|\overline{x}\| < 0$ and

 $\langle x^*, x \rangle - \|x\| \le \langle x^*, \overline{x} \rangle - \|\overline{x}\| < 0 \ \forall x \in X.$

In particular, taking $x = \frac{1}{2}\overline{x}$ we get

$$\frac{1}{2}\left(\langle x^*, \overline{x} \rangle - \|\overline{x}\|\right) \le \langle x^*, \overline{x} \rangle - \|\overline{x}\|$$

which result in the rediculus statement

$$\frac{1}{2} \ge 1.$$

Thus, $\langle x^*, \overline{x} \rangle = \|\overline{x}\|$ and $\|x^*\| = 1$.

Example This example illustrates cases where the norm subdifferential is a singleton and others where it is a whole set of points. Let $X = (\mathbb{R}^2; \|\cdot\|_{\infty})$. Then $X^* = (\mathbb{R}^2; \|\cdot\|_1)$ and for $\eta = (\xi_1, \xi_2) \in X^*$ and $x = (x_1, x_2) \in X$, $\langle \eta, x \rangle = \xi_1 x_1 + \xi_2 x_2$. Let's compute $\partial \|\cdot\|_{\infty} (1, 1/2)$ and $\partial \|\cdot\|_{\infty} (1, 1)$. For the first subdifferential, we need to find all $\eta \in X^*$ with $\|\eta\|_1 = 1$ and $\langle \eta, (1, 1/2) \rangle = \|(1, 1/2)\|_{\infty} = 1$. Thus, we need to solve the silutanuous system

$$\begin{array}{rcl} \xi_1 + 1/2\xi_2 & = & 1, \\ |\xi_1| + |\xi_2| & = & 1. \end{array}$$

It can easily be verified that the only solution to this system is $\eta = (1,0)$. Therefore,

$$\partial \|\cdot\|_{\infty} (1, 1/2) = \{(1, 0)\}$$

For the second subdifferential the corresponding system that needs to be solved is

$$\begin{array}{rcl} \xi_1 + \xi_2 &=& 1, \\ \xi_1 |+ |\xi_2 | &=& 1. \end{array}$$

The set of solutions S in this case can be described as

$$S = \left\{ (\xi_1, \xi_2) \in \mathbb{R}^2 : 0 \le \xi_1, \xi_2 \le 1, \xi_1 + \xi_2 = 1. \right\}$$

Therefore,

$$\partial \left\|\cdot\right\|_{\infty}(1,1) = S$$

Example This example illustrates that the norm subdifferentials at two close points may not be close. As in the previous example, let $X = (\mathbb{R}^2; \|\cdot\|_{\infty})$, $X^* = (\mathbb{R}^2; \|\cdot\|_1)$. Let a > 0, $\varepsilon > 0$ be given. The two vctors $(a + \varepsilon, a)$ and $(a, a + \varepsilon)$ are such that $\|(a + \varepsilon, a) - (a, a + \varepsilon)\|_{\infty} = \|(\varepsilon, -\varepsilon)\|_{\infty} = \varepsilon$. On the other hand, $\partial \|\cdot\|_{\infty} (a + \varepsilon, a) = (1, 0)$ while $\partial \|\cdot\|_{\infty} (a, a + \varepsilon) = (0, 1)$. In this case $\|(1, 0) - (0, 1)\|_1 = 2$.