1 Variational Descriptions and Minimality (1.1.5)

Proposition 1 (variational characterization of ε -normals) $\Omega \subset X, \ \overline{x} \in \Omega, \ \varepsilon \ge 0.$ $x^* \in \widehat{N}_{\varepsilon}(\overline{x}; \Omega)$ if and only if for any $\gamma > 0$, the function

$$\psi(x) = \langle x^*, x - \overline{x} \rangle - (\varepsilon + \gamma) \|x - \overline{x}\|$$

attains a local maximum relative to Ω at \overline{x} .

Lemma 2 (smoothing functions in \mathbb{R})

Suppose $\rho: [0,\infty) \to [0,\infty)$ is such that $\rho'_+(0)$ exists, $\rho(0) = \rho'_+(0) = 0$ and $\rho(t) \le \alpha + \beta t \ \forall t \in [0,\infty), \ \alpha,\beta > 0$. Then there is a nondecreasing convex C^1 function $\tau: [0,\infty) \to [0,\infty)$ such that $\tau(0) = \tau'_+(0) = 0$ and $\tau(t) > \rho(t) \ \forall t > 0$.

- A Banach space X is said to admit a Fréchet smooth norm if there is an equivalent norm on X that is Fréchet differentiable at any nonzero point.
- Suppose S is a given class of functions on a Banach space X. An S-smooth bump function is a function $b: X \to \mathbb{R}$ such that $b \in S$, $b(x_0) \neq 0$ for some $x_0 \in X$ and b(x) = 0 outside some ball in X.
- In what follows we will consider S to be one of the classes of Fréchet differentiable functions (Fréchet smooth; $S = \mathcal{F}$), Lipschitzian and Fréchet smooth functions: $S = \mathcal{LF}$, Lipschitzian and C^1 functions: $S = \mathcal{LC}^1$.

Theorem 3 (1.30 variational desc... of...) X a Banach space, $\phi \neq \Omega \subseteq X, \overline{x} \in \Omega, U$ a nbhd of \overline{x} .

- (i) Given x* ∈ X*, assume ∃ a function S : U → ℝ, Fréchet differentiable at x̄, S'(x̄) = x* and S achieves a local maximum relative to Ω at x̄. Then x* ∈ N̂(x̄; Ω). Conversely, for every x* ∈ N̂(x̄; Ω), ∃ a function S : X → ℝ, Fréchet differentiable at x̄, S'(x̄) = x* and S achieves a local maximum 0 relative to Ω at x̄.
- (ii) Assume X admits a Fréchet smooth renorm. Then for every x* ∈ N (x; Ω) there is a concave Fréchet smooth function S : X → ℝ that acheives a unique global maximum relative to Ω at x̄ and S' (x̄) = x*.
- (iii) Assume X admits an S-smooth bump function, where $S \in \{\mathcal{F}, \mathcal{LF}, \mathcal{LC}^1\}$. Then, for any $x^* \in \widehat{N}(\overline{x}; \Omega) \exists$ an S-smooth function $S : X \to \mathbb{R}$ such that (ii) holds.

Proposition 4 (1.31: a...)

 $\begin{aligned} \widehat{\mathcal{N}} \ a \ prenormal \ structure \ on \ X \ (i.e., \ \widehat{\mathcal{N}}(\cdot; \Omega) : X \rightrightarrows X^*, \ x \notin \Omega \Longrightarrow \widehat{\mathcal{N}}(x, \Omega) = \phi, \\ \widehat{\mathcal{N}}(x; \Omega) = \widehat{\mathcal{N}}\left(x; \widetilde{\Omega}\right) \ if \ \Omega, \ \widetilde{\Omega} \ coincide \ near \ x). \\ Assume: \end{aligned}$

(M) $\forall x^* \in X^*, \ \varepsilon > 0, \ u \in \Omega \cap B(\overline{x}, \varepsilon)$ a local minimum of the function

 $\psi\left(x\right) = \left\langle x^{*}, x - \overline{x} \right\rangle + \varepsilon \left\| x - \overline{x} \right\|$

on $\Omega \exists a v \in u \in \Omega \cap B(\overline{x}, \varepsilon)$ such that

$$-x^* \in \widehat{\mathcal{N}}(v;\Omega) + \eta \mathbf{B}_{X^*} \ \forall \eta > \varepsilon.$$

Then

$$N\left(\overline{x};\Omega\right) \subset \mathcal{N}\left(v;\Omega\right) := \lim_{x \to \overline{x}} \widehat{\mathcal{N}}\left(x;\Omega\right).$$

2 Coderivatives of Set Valued Mappings (1.2)

Here X, Y are Banach spaces, $F : X \rightrightarrows Y$ is a set valued mapping (lower case letters such as f are used to denote single valued mappings).

- F is closed valued (convex valued,...etc.) means that F(x) is closed (convex,...etc.)
- dom $F := \{x \in X : F(x) \neq \phi\},\$
- ran $F := \{ y \in Y : F^{-1}(y) \neq \phi \},\$
- ker $F := \{x \in X : 0 \in F(x)\},\$
- gr $F := \{(x, y) \in X \times Y : y \in F(x)\}$. The norm on $X \times Y$ is taken as ||(x, y)|| = ||x|| + ||y||.
- If $\Omega \subset X$, $F(\Omega) := \{y \in Y : F^{-1}(y) \cap \Omega \neq \phi\}$
- If $\Theta \subset Y$, $F^{-1}(\Theta) := \{x \in X : F(x) \cap \Theta \neq \phi\}$
- $F^{-1}: Y \rightrightarrows X$ is the set valued mapping defined by $F^{-1}(y) := \{x \in X : y \in F(x)\}$
- dom $F^{-1} = \operatorname{ran} F$, ran $F^{-1} = \operatorname{dom} F$
- gr $F^{-1} := \{(y, x) \in Y \times X : (x, y) \in \text{gr } F\} = \{(y, x) \in Y \times X : x \in F^{-1}(y)\}$
- F is positively homogeneous if $0 \in F(0)$ and $F(\alpha x) \supset \alpha F(x) \quad \forall x \in X$ and all $\alpha > 0$.
- F is positively homogeneous \iff gr F is a cone in $X \times Y$.
- If F is positively homogeneous we define

$$||F|| := \sup \{ ||y|| : y \in F(x), ||x|| \le 1 \}.$$

2.1 Basic Definitions and Representations (1.2.1)

Definition 5 (1.32: coderivatives) $F: X \rightrightarrows Y, \text{ dom } F \neq \phi.$

(i) The ε -coderivative ($\varepsilon \ge 0$) of F at $(x, y) \in \operatorname{gr} F$ is defined by

$$\widehat{D}_{\varepsilon}^*F(x,y) : Y^* \rightrightarrows X^*, \widehat{D}_{\varepsilon}^*F(x,y)y^* = \left\{ x^* \in X^* : (x^*, -y^*) \in \widehat{N}_{\varepsilon}((x,y); \operatorname{gr} F) \right\}.$$

The 0-coderivative is sometimes called the pre-coderivative and is denoted $\widehat{D}^*F(x,y)$.

(ii) The normal coderivative of F at $(\overline{x}, \overline{y}) \in \operatorname{gr} F$ is defined by

$$\begin{split} D_N^*F\left(\overline{x},\overline{y}\right) &: \quad Y^* \rightrightarrows X^*, \\ D_N^*F\left(\overline{x},\overline{y}\right)\overline{y}^* &= w^* - \varlimsup_{\substack{(x,y) \to (\overline{x},\overline{y}), \\ (x,y) \to (\overline{x},\overline{y}), \\ \varepsilon \to 0^+}} \widehat{D}_{\varepsilon}^*F\left(x,y\right)y^* \\ &= \left\{x^* \in X^* : \exists \left(x_n, y_n\right) \stackrel{\text{gr}\,F}{\to} \left(\overline{x},\overline{y}\right), y_n^* \stackrel{w^*}{\to} \overline{y}^*, \varepsilon_n \to 0^+ \right. \\ &\quad , \left(x_n^*, -y_n^*\right) \in \widehat{N}_{\varepsilon_n}\left(\left(x_n, y_n\right); \operatorname{gr}\,F\right), x_n^* \stackrel{w^*}{\to} x^*. \right\} \\ &= \left\{x^* \in X^* : \left(x^*, -y^*\right) \in N\left(\left(\overline{x},\overline{y}\right); \operatorname{gr}\,F\right)\right\}. \end{split}$$

If $(\overline{x}, \overline{y}) \notin \operatorname{gr} F$ we put $D_N^* F(\overline{x}, \overline{y}) y^* = \phi \ \forall y^* \in Y^*.$

(iii) The mixed coderivative of F at $(\overline{x}, \overline{y}) \in \operatorname{gr} F$ is defined by

$$D_{M}^{*}F(\overline{x},\overline{y}) : Y^{*} \rightrightarrows X^{*},$$

$$D_{M}^{*}F(\overline{x},\overline{y})\overline{y}^{*} = w^{*} - \lim_{\substack{(x,y) \to (\overline{x},\overline{y}), \\ y^{*} \to \overline{y}^{*}, \\ \varepsilon \to 0^{+}}} \widehat{D}_{\varepsilon}^{*}F(x,y) y^{*}$$

$$= \left\{ x^{*} \in X^{*} : \exists (x_{n}, y_{n}) \stackrel{\text{gr} F}{\to} (\overline{x}, \overline{y}), y_{n}^{*} \to \overline{y}^{*}, \varepsilon_{n} \to 0^{+} \right.$$

$$\left. , (x_{n}^{*}, -y_{n}^{*}) \in \widehat{N}_{\varepsilon_{n}} \left((x_{n}, y_{n}) ; \text{gr} F \right), x_{n}^{*} \stackrel{w^{*}}{\to} x^{*}. \right\}$$

Examples 1. Define $F : \mathbb{R} \rightrightarrows \mathbb{R}$ by

$$F(x) = \begin{cases} \begin{bmatrix} -\sqrt{1-x^2}, \sqrt{1-x^2} \end{bmatrix}, & -1 \le x \le 1\\ \phi & \text{otherwise} \end{cases}.$$

.

$$\widehat{D}^*F(1,0) y^* = \begin{cases} [0,\infty), & y^* = 0\\ \phi & \text{otherwise} \end{cases},
\widehat{D}^*F(1,1) y^* = \begin{cases} -y^*, & y^* \le 0\\ \phi & \text{otherwise} \end{cases}.$$

2. Define $F : \mathbb{R} \rightrightarrows \mathbb{R}$ by

$$F(x) = \begin{cases} [0,1], & 0 \le x \le 1\\ \phi & \text{otherwise} \end{cases}$$

$$\widehat{D}^*F(0,0) y^* = \begin{cases} (-\infty,0], & y^* \ge 0\\ \phi & \text{otherwise} \end{cases},$$

$$\widehat{D}^*_{\varepsilon}F(0,0) y^* = \begin{cases} \phi, & y^* < -\varepsilon\\ \left(-\infty, \sqrt{\varepsilon^2 - y^{*2}}\right], & y^* \in [-\varepsilon,0]\\ (-\infty, \varepsilon] & \text{otherwise} \end{cases}.$$

- 3. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$
- 4. Define $F : \mathbb{R} \rightrightarrows \mathbb{R}$ by $F(x) = [-|x|, \infty)$
- 5. Define $F : [0, 1] \rightrightarrows [0, 1]$ by F(x) = [0, 1]
- The indicator mapping:

 $\Omega \subset X$, the indicator mapping $\Delta(\cdot; \Omega) : X \to Y$ is defined by

$$\Delta(x;\Omega) = \begin{cases} 0 \in Y \text{ if } x \in \Omega\\ \phi \text{ otherwise} \end{cases}.$$

• $\operatorname{gr} \bigtriangleup = \Omega \times \{0\}$.

Proposition 6 (1.33 coderivative of the indicator mapping)

$$\widehat{D}_{\varepsilon}^* \triangle \left(\overline{x}; \Omega\right) \left(y^*\right) = \widehat{N}_{\varepsilon} \triangle \left(\overline{x}; \Omega\right) \ \forall y^* \in Y^* D_N^* \triangle \left(\overline{x}; \Omega\right) \left(y^*\right) = D_M^* \triangle \left(\overline{x}; \Omega\right) \left(y^*\right) = N\left(\overline{x}; \Omega\right) \ \forall y^* \in Y^*.$$

• Inner semicontinuity:

 $F: X \rightrightarrows Y$ is inner semicontinuous at $\overline{x} \in \operatorname{dom} F$ if

$$F\left(\overline{x}\right) = \lim_{\substack{x^{\dim F}\overline{x} \\ \to \ \overline{x}}} F\left(x\right)$$
$$= \left\{ y \in Y : \forall x_k \xrightarrow{\dim F} \overline{x} \exists y_k \in F\left(x_k\right), \ y_k \to y \right\}.$$

Theorem 7 (1.34 extremal peroperty of convex valued multifunctions)

If $F: X \rightrightarrows Y$ is inner semicontinuous at $\overline{x} \in \text{dom } F$ and convex valued around \overline{x} then for any $(\overline{x}, \overline{y}) \in \text{gr } F$ and any $y^* \in \text{dom } D_N^*F(\overline{x}; \overline{y})$

$$\langle y^*, \overline{y} \rangle = \min_{y \in F(\overline{x})} \langle y^*, y \rangle.$$

- $\widehat{D}^*F(\overline{x};\overline{y})(y^*) \subset D^*_MF(\overline{x};\overline{y})(y^*) \subset D^*_NF(\overline{x};\overline{y})(y^*) \,\forall y^* \in Y^*.$
- All three functions are positively homogeneous.
- The first inclusion is oftern strict.
- The second inclustion can be strict in infinite dimensional spaces.

Definition 8 (1.36 graphical regularity of multifunctions) $F: X \rightrightarrows Y, \ (\overline{x}, \overline{y}) \in \text{gr } F.$

- (i) F is N-regular at $(\overline{x}, \overline{y})$ if $D_N^* F(\overline{x}, \overline{y}) = \widehat{D}^* F(\overline{x}, \overline{y})$.
- (ii) F is M-regular at $(\overline{x}, \overline{y})$ if $D_M^* F(\overline{x}, \overline{y}) = \widehat{D}^* F(\overline{x}, \overline{y})$.
 - F is N-regular at $(\overline{x}, \overline{y})$ if and only if gr F is normally regular.
 - $F: X \rightrightarrows Y$ is convex graph if gr F is a convex subset of $X \times Y$.

Proposition 9 (1.37 coderivatives of convex-graph multifunctions)

Let $F: X \rightrightarrows Y$ be convex graph. Then F is N-regular at $(\overline{x}, \overline{y}) \in \text{gr } F$. Furthermore, for any $y^* \in Y^*$

$$D_{M}^{*}F(\overline{x};\overline{y})(y^{*}) = D_{N}^{*}F(\overline{x};\overline{y})(y^{*})$$

=
$$\left\{x^{*} \in X^{*}: \langle x^{*},\overline{x} \rangle - \langle y^{*},\overline{y} \rangle = \max_{(x;y) \in \text{gr } F} \langle x^{*},x \rangle - \langle y^{*},y \rangle \right\}.$$

Theorem 10 (1.38 coderivatives of differentiable mappings) Suppose $f : X \to Y$ is Fréchet differentiable at \overline{x} . Then

$$\widehat{D}^*f(\overline{x}) y^* = \{ f'(\overline{x})^* y^* \} \, \forall y^* \in Y^*.$$

If f is strictly differentiable at \overline{x} then

$$D_{N}^{*}f\left(\overline{x}\right)y^{*}=D_{M}^{*}f\left(\overline{x}\right)y^{*}=\left\{f'\left(\overline{x}\right)^{*}y^{*}\right\}\forall y^{*}\in Y^{*}$$

i.e. f is N-regular.

Corollary 11 (1.39 coderivatives of linear operators) If $A \in L(X, Y)$ then A is N-regular and

$$D_N^*A\left(\overline{x}\right)y^* = D_M^*A\left(\overline{x}\right)y^* = \{A^*y^*\} \,\forall y^* \in Y^*, \overline{x} \in X.$$

2.2 Lipschitzian Properties (1.2.2)

In this subsection coderivative conditions are obtained to ensure Lipschitzian properties of mappings.

• For Ω_1, Ω_2 subsets of a metric space Z, let

$$D\left(\Omega_{1},\Omega_{2}\right) = \sup_{x\in\Omega_{1}}d\left(x,\Omega_{2}\right).$$

The Hausdorff distance $d_H(\Omega_1, \Omega_2)$ between Ω_1 and Ω_2 is defined to be

$$d_H(\Omega_1, \Omega_2) = \max \left\{ D(\Omega_1, \Omega_2), D(\Omega_2, \Omega_1) \right\}.$$

• It can be shown that

$$d_H(\Omega_1, \Omega_2) = \inf \left\{ \eta \ge 0 : \Omega_1 \subset \Omega_2 + \eta \mathbf{B}, \ \Omega_2 \subset \Omega_1 + \eta \mathbf{B} \right\}.$$

• It can be shown that for all $u, v \in Z$, $\Omega \subset Z$

$$\begin{aligned} |d(u,\Omega_1) - d(u,\Omega_2)| &\leq d_H(\Omega_1,\Omega_2), \\ |d(u,\Omega) - d(v,\Omega)| &\leq d(u,v). \end{aligned}$$

- **Definition 12** (1.40 Lipschitzian properties of set valued mappings) Suppose $F : X \rightrightarrows Y$ and dom $F \neq \phi$.
- (i) We say that F is Lipschitz-like on $U \subset X$ relative to $V \subset Y$ if U, V are nonempty and there exists an $\ell \geq 0$ such that

$$F(x) \cap V \subset F(u) + \ell ||x - u|| \mathbf{B}_Y \forall x, u \in U$$
(1)

- (ii) We say that F is locally Lipschitz-like around $(\overline{x}, \overline{y}) \in \operatorname{gr} F$ with modulus $\ell \geq 0$ if there exist not U of \overline{x} and V of \overline{y} such that (1) holds. The infimum of all $\ell \geq 0$ is called the exact Lipschitzian bound of F around $(\overline{x}, \overline{y})$ and is denoted by lip $F(\overline{x}, \overline{y})$.
- (iii) We say that F is Lipschitz continuous on $U \subset X$ if (1) holds with V = Y. Furthermore, F is called locally Lipschitzian around \overline{x} with exact bound lip $F(\overline{x})$ if V = Y in (ii).
 - F is locally Lipschitzian on $U \subset X$ if and only if

$$d_H(F(x), F(y)) \le \ell ||x - u|| \quad \forall x, u \in U,$$

Theorem 13 (1.41 scalarization of the Lipschitz-like properties) Suppose $F : X \Longrightarrow Y$ and $(\overline{x}, \overline{y}) \in \text{gr } F$. TFAE

(a) F is locally Lipschitz-like around $(\overline{x}, \overline{y})$.

(b) The function $\rho: X \times Y \to \mathbb{R}$ defined by

$$\rho\left(x,y\right) = d\left(y,F\left(x\right)\right)$$

is locally Lipschitzian around $(\overline{x}, \overline{y})$.

- The property of locally Lipschitzian around $\overline{x} \implies$ the property of locally Lipschitzian around $(\overline{x}, \overline{y})$.
- $\operatorname{lip} F(\overline{x}) \ge \sup \left\{ \operatorname{lip} F(\overline{x}, \overline{y}) : \overline{y} \in F(\overline{x}) \right\}.$
- The converse inequality holds in the case given in Theorem 1.42 below.
- $F: X \rightrightarrows Y$ is locally compact around $\overline{x} \in \text{dom } F$ if there exists a nbhd O of \overline{x} and a compact set $C \subset Y$ such that $F(O) \subset C$.
- F is closed (more precisely F is closed graph) at $\overline{x} \in \text{dom } F$ if $\forall y \notin F(\overline{x})$ there exists a nbhd U of \overline{x} and a nbhd V of y such that

$$F(x) \cap V = \phi \ \forall x \in U.$$

Theorem 14 (1.42 Lipschitz continuity of locally compact multifunctions)

Suppose $F : X \Longrightarrow Y$ is closed at and locally compact around $\overline{x} \in \text{dom } F$. Then F is locally Lipschitzian around \overline{x} iff it is locally Lipschitz-like around $(\overline{x}, \overline{y})$ for all $\overline{y} \in F(\overline{x})$. In this case

$$\lim F\left(\overline{x}\right) = \max\left\{\lim F\left(\overline{x}, \overline{y}\right) : \overline{y} \in F\left(\overline{x}\right)\right\}.$$

Theorem 15 (1.43 ε -coderivatives of Lipschitz mappings) Suppose $F: X \rightrightarrows Y, \overline{x} \in \text{dom } F$ and $\varepsilon \ge 0$.

(i) If F is locally Lipschitz-like around $(\overline{x}, \overline{y}) \in \text{gr } F$ with modulus $\ell \ge 0$ then there exists $\eta > 0$ such that

$$\sup \left\{ \|x^*\| : x^* \in \widehat{D}_{\varepsilon}^* F(x, y) y^* \right\} \leq \ell \|y^*\| + \varepsilon (1 + \ell)$$

$$\forall x \in B(\overline{x}, \eta), \ y \in F(x) \cap B(\overline{y}, \eta), \ y^* \in Y^*.$$
(2)

Therefore,

$$\lim F\left(\overline{x},\overline{y}\right) \geq \inf_{\eta>0} \sup\left\{ \left\| \widehat{D}^*F\left(x,y\right) \right\| : x \in B\left(\overline{x},\eta\right), \ y \in F\left(x\right) \cap B\left(\overline{y},\eta\right) \right\}.$$

(ii) If F is locally Lipschitzian around \overline{x} then there exists a $\eta > 0$ such that (2) holds $\forall x \in B(\overline{x}, \eta), y \in F(x), y^* \in Y^*$. Therefore,

$$\lim F(\overline{x}) \ge \inf_{\eta > 0} \sup \left\{ \left\| \widehat{D}^* F(x, y) \right\| : x \in B(\overline{x}, \eta), \ y \in F(x) \right\}.$$

- **Theorem 16** (1.44 mixed coderivatives of Lipschitzian mappings) Suppose $F: X \rightrightarrows Y, \overline{x} \in \text{dom } F$ and $\varepsilon \ge 0$.
- (i) If F is locally Lipschitz-like around $(\overline{x}, \overline{y}) \in \operatorname{gr} F$ then

 $\|D_M^*F(\overline{x},\overline{y})\| \le \lim F(\overline{x},\overline{y}) < \infty.$

Therefore,

$$D_M^*F(\overline{x},\overline{y})(0) = \{0\}.$$

(ii) If F is locally Lipschitzian around \overline{x} then

$$\sup_{\overline{y}\in F(\overline{x})} \|D_M^*F(\overline{x},\overline{y})\| \le \lim F(\overline{x}).$$

Therefore,

$$D_M^*F(\overline{x},\overline{y})(0) = \{0\} \ \forall \overline{y} \in F(\overline{x}).$$