1 Variational Descriptions and Minimality (1.1.5)

Proposition 1 (variational characterization of e-normals)
QCX,7€Q,e2>0.
z* € N, (7;Q) if and only if for any v > 0, the function

()= ("2 -7) = (e+7) [z — 7|
attains a local mazimum relative to  at T.

Lemma 2 (smoothing functions in R)

Suppose p : [0,00) — [0,00) is such that p/, (0) exists, p(0) = p/, (0) =0 and p(t) <
a+ Bt Vt € [0,00), a,3 > 0. Then there is a nondecreasing convexr C' function T :
0,00) — [0,00) such that 7 (0) = 7/, (0) =0 and 7 (t) > p(t) Vt > 0.

e A Banach space X is said to admit a Fréchet smooth norm if there is an equivalent
norm on X that is Fréchet differentiable at any nonzero point.

e Suppose S is a given class of functions on a Banach space X. An S-smooth bump
function is a function b : X — R such that b € S, b(zg) # 0 for some zy € X and
b (z) = 0 outside some ball in X.

e In what follows we will consider S to be one of the classes of Fréchet differentiable
functions (Fréchet smooth; S = F), Lipschitzian and Fréchet smooth functions:
S = LF, Lipschitzian and C! functions: S = LC*.

Theorem 3 (1.30 variational desc... of...)
X a Banach space, ¢ #Q C X, T €, U a nbhd of 7.

(i) Givenz* € X*, assume 3 a function S : U — R, Fréchet differentiable at T, S' (T) = x*
and S achieves a local mazimum relative to Q) at 7. Then z* € N (7;Q2) . Conversely,
for every z* € ]\Af(f, Q), 3 a function S : X — R, Fréchet differentiable at T,
S" () = x* and S achieves a local mazimum 0 relative to Q0 at T.

(ii) Assume X admits a Fréchet smooth renorm. Then for every z* € N (z: ) there is a
concave Fréchet smooth function S : X — R that acheives a unique global mazimum
relative to Q at T and S’ (T) = z*.

(iii) Assume X admits an S-smooth bump function, where S € {F, LF, LC'} . Then, for
any x* € N (7;8) 3 an S-smooth function S : X — R such that (ii) holds.

Proposition 4 (1.31: a...)
N a prenormal structure on X (i.e., N (5Q): X = X*, ¢ Q = N (2,Q) = ¢,

N (z;9) =N (x; SNZ) if Q, Q coincide near x).

Assume:



(M) Va* € X*, e >0, u € QN B(T,e) alocal minimum of the function

U (z) = ("2 —7) + o -7
onQIJaveueQNB(T,e) such that

—2* e N (1;9Q) + nBx- Vi > e.

Then

2

N (7 Q) C N (1:9) = lim N (2 Q) .

T—T

Coderivatives of Set Valued Mappings (1.2)

Here X, Y are Banach spaces, F' : X = Y is a set valued mapping (lower case letters such
as f are used to denote single valued mappings).

F is closed valued (convex valued,...etc.) means that F (z) is closed (convex,...etc.)
dom F :={x € X : F(z) # ¢},

ranF:={yeY :F1(y) # ¢},

ker F:={z € X :0€ F(z)},

grF = {(z,y) e X xY :y € F(z)}. The norm on X X Y is taken as ||(z,y)| =
[l + flyll-

FQCX F(Q) ={yeY: :F'ly)nQ+s}

HOCY, F1O):={zrecX :F(z)NO # ¢}

F~1:Y = X is the set valued mapping defined by F7! (y) :={r € X : y € F (x)}
dom F~! =ran F, ran F~! = dom F

g = {(5,0) €Y x X < (1,5) € gr F} = {(0) €Y x X -2 € F(3)}

F' is positively homogeneous if 0 € F (0) and F' (ax) D oF (x) Yz € X and all
a > 0.

F' is positively homogeneous <= gr F' is a cone in X x Y.

If I is positively homogeneous we define

IE] = sup {[lyl| - y € F' (), [l=]| <1}



2.1 Basic Definitions and Representaions (1.2.1)

Definition 5 (1.32: coderivatives)
F: X =2Y, dom F # ¢.

(1) The e-coderivative (¢ > 0) of F' at (x,y) € gr F' is defined by
D'F (z,y) : Y*= X*
DIF (x,y)y* = {x* € X" : (2", —y") € Ne ((z,9) ;ng)}.
The 0-coderivative is sometimes called the pre-coderivative and is denoted D*F (z,y).
(ii) The normal coderivative of F at (T,y) € gr F' is defined by
DLF(Z,7) : Y*= X7,
DyF @9y = w'— Iim DIF(z,y)y"
(@y)=(75),
TaS T

e—0t

= {o e X" 3@y T @)y BT e -0

(@h =y € N, (@n ) 380 F) a3 5 0 |
e X (") EN(@®T) e F)}.
If (z,7) ¢ gr F we put DNF (Z,9)y* = ¢ Yy* € Y.
(iii) The mixed coderivative of F' at (T,7) € gr F is defined by
Dy F(z,y) : Y =X
Dy F(z.5)7 = w'— Tm DIF(x,y)y"
= {x* € X" 3A(xn, Yn) gl (7,7),y5 =¥ e, — 0

(@ =) € Ney (@n, ) 0 F) 5 0}

Examples 1. Define F': R = R by

_ [—VI-22V1-2?], -1<2<1
F(z)= { & otherwise
D*F (1,0)y* = [0,00), y =0
; ) otherwise ’
D*F(1,1)y* = { b otherwise



2. Define F': R = R by

(01, 0<z<1
Fr) = { o otherwise °

~

— * >

10} otherwise

{ d)v y* < —€

)

~

D:F 0,00y = { (-oo/E—y?|, yrel-20

(—o0, €] otherwise

3. Define f: R — R by f (z) = 2?
4. Define F': R =2 R by F (z) = [— |z|, 00)
5. Define F': [0,1] = [0,1] by F (z) = [0, 1]

e The indicator mapping;:
Q) C X, the indicator mapping A (+;Q) : X — Y is defined by

DeYifz el
¢ otherwise

A(m;Q):{

e or A =Q x{0}.
Proposition 6 (1.33 coderivative of the indicator mapping)

~

DA (T:Q) () = NATQ) Yy e V™
DyA(TQ) (v') = DyA(mQ) (y') =N (7Q) vy e Y™

e Inner semicontinuity:

F : X =Y is inner semicontinuous at = € dom F' if

F@ = lm F(2)

dom F_
r — T

= {yGY:kad(ﬂFfﬂykeF(xk), yk_)y}-

Theorem 7 (1.3} extremal peroperty of convex valued multifunctions)
If F: X =Y is inner semicontinuous at T € dom F' and convex valued around T then
for any (T,7) € gr F and any y* € dom Dy F (T;7)

*.y) = min (y*,y).
", 9) Jnin W y)



D*F (z:3) (y*) C Dy, F (7:9) (v*) C Dy F (7:7) (y*) Vy* € Y™

All three functions are positively homogeneous.

The first inclusion is oftern strict.

The second inclustion can be strict in infinite dimensional spaces.

Definition 8 (1.36 graphical regqularity of multifunctions)
F:X=2Y, (7,y) €grF.

(i) F is N-regular at (Z,7) if DN F (T,7) = D*F (Z,79) .

(ii) F is M-reqular at (z,7) if D%, F (z,7) = D*F (z,7).
e [is N-regular at (7,7) if and only if gr F' is normally regular.
e [': X Y is convex graph if gr F' is a convex subset of X x Y.

Proposition 9 (1.37 coderivatives of convex-graph multifunctions)
Let F: X =Y be convex graph. Then F is N-regular at (T,7y) € gr F. Furthermore,
for any y* € Y*

Dy F (m9) (y") = DNF(T:7) (v)
— {x* e X" (z"7) — (y*,y) = max (2", x)— <y*7y>}

(w5y)€gr F

Theorem 10 (1.38 coderivatives of differentiable mappings)
Suppose f: X — 'Y is Fréchet differentiable at . Then

D'f @y ={f' @ v}y ey
If f s strictly differentiable at T then
Dyf @y =Dyf @y ={f @) y}tvy ey
i.e. f is N-reqular.

Corollary 11 (1.39 coderivatives of linear operators)
If Ae L(X,Y) then A is N-regular and

DyA @)y = DYy A@)y" = {AY IV € Y*, T € X.



2.2 Lipschitzian Properties (1.2.2)

In this subsection coderivative conditions are obtained to ensure Lipschitzian properties
of mappings.

e For 1, )5 subsets of a metric space Z, let

D (€,9s) = sup d(z, ().

e

The Hausdorff distance dy (£21,22) beteen ; and 25 is defined to be
dy (1,92) = max{D (21,Qs), D (Q2,)} .
e [t can be shown that
dy (21,Q2) =inf{n >0:Q C Qs+ 1B, Oy C O +7B}.

e It can be shown that for all u,v € Z, Q C Z

|d (1, 1) — d (u, Q)|
jd (u, ) — d (v, )]

dH (Ql7 QQ) 5

<
< d(u,v).

Definition 12 (1.40 Lipschitzian properties of set valued mappings)
Suppose F': X =Y and dom F # ¢.

(1) We say that F is Lipschitz-like on U C X relative to V- C 'Y if UV are nonempty
and there exists an ¢ > 0 such that

Fx)nV C F(u)+ ||z — u|| By Vz,u e U (1)

(ii) We say that F is locally Lipschitz-like around (ZT,7) € gr F' with modulus ¢ > 0 if
there exist nbhds U of T and V' of y such that (1) holds. The infimum of all ¢ > 0 is
called the exact Lipschitzian bound of F' around (Z,7y) and is denoted by lip F' (Z,7) .

(iii) We say that F is Lipschitz continuous on U C X if (1) holds with V =Y. Further-
more, F is called locally Lipschitzian around T with exact bound lip F () if V =Y

e F'is locally Lipschitzian on U C X if and only if

Theorem 13 (1.41 scalarization of the Lipschitz-like properties)
Suppose F': X =Y and (T,y) € gr F. TFAE

(a) F is locally Lipschitz-like around (T,7) .

6



(b) The function p: X x Y — R defined by

p(x,y) =d(y, F(x))

is locally Lipschitzian around (Z,7) .

e The property of locally Lipschitzian around T = the property of locally Lip-
schitzian around (Z,7) .

o lip F' (%) > sup{lip F' (Z,7) : g € F(T)}.
e The converse inequality holds in the case given in Theorem 1.42 below.

e [': X 2 Y is locally compact around = € dom F' if there exists a nbhd O of = and
a compact set C' C Y such that F'(O) C C.

e F is closed (more precisely F' is closed graph) at T € dom F' if Yy ¢ F () there
exists a nbhd U of = and a nbhd V' of y such that

F(x)nV =¢Vx e U.

Theorem 14 (1.42 Lipschitz continuity of locally compact mutlifunctions)

Suppose F' : X =2 Y s closed at and locally compact around * € dom F. Then F is
locally Lipschitzian around T iff it is locally Lipschitz-like around (Z,7y) for ally € F ().
In this case

lip F (7) =max{lip F (7,7) :y € F (T)} .

Theorem 15 (1.43 e-coderivatives of Lipschitz mappings)
Suppose F : X =Y, T € dom F' and € > 0.

(1) If F is locally Lipschitz-like around (%,7y) € gr F' with modulus ¢ > 0 then there ezists
1n > 0 such that

sup{Haj | :2* € DF (z,9)y } Clly*| +e(1+4)

. (2)
Vee B(z,n), ye F(x)NB(y,n), y* € Y~

Therefore,

lip F (z,y) > mfsup{HlA)*F(x,y)H cx € B(z,n), ye F(x) ﬂB@,n)}.

n>0

(i) If F is locally Lipschitzian around T then there exists a n > 0 such that (2) holds
Ve € B(Z,n), y € F(x), y* €Y*. Therefore,

lip F (7) > infsup{HlA?*F(x,y)H cx € B(Z,n), ye F(x)}
n>0



Theorem 16 (1.44 mized coderivatives of Lipschitzian mappings)
Suppose F: X =Y, T € dom F and e > 0.

(1) If F is locally Lipschitz-like around (Z,7) € gr F' then
1Dy F (7, 9)|| <lip F (7, 7) < oo.

Therefore,
Dy F (z,7) (0) = {0}
(ii) If F is locally Lipschitzian around T then

sup || Dy F (Z.9)|| < lip F (T).
yeF(T)

Therefore,
Dy F (z,5)(0) = {0} vy € F ().



