
1 Variational Descriptions and Minimality (1.1.5)

Proposition 1 (variational characterization of "-normals)

 � X; x 2 
; " � 0:
x� 2 bN" (x; 
) if and only if for any 
 > 0; the function

 (x) = hx�; x� xi � ("+ 
) kx� xk

attains a local maximum relative to 
 at x:

Lemma 2 (smoothing functions in R)
Suppose � : [0;1) ! [0;1) is such that �0+ (0) exists, � (0) = �0+ (0) = 0 and � (t) �

� + �t 8t 2 [0;1) ; �; � > 0: Then there is a nondecreasing convex C1 function � :
[0;1)! [0;1) such that � (0) = � 0+ (0) = 0 and � (t) > � (t) 8t > 0:

� A Banach space X is said to admit a Fréchet smooth norm if there is an equivalent
norm on X that is Fréchet di¤erentiable at any nonzero point.

� Suppose S is a given class of functions on a Banach space X: An S-smooth bump
function is a function b : X ! R such that b 2 S; b (x0) 6= 0 for some x0 2 X and
b (x) = 0 outside some ball in X:

� In what follows we will consider S to be one of the classes of Fréchet di¤erentiable
functions (Fréchet smooth; S = F), Lipschitzian and Fréchet smooth functions:
S = LF , Lipschitzian and C1 functions: S = LC1:

Theorem 3 (1.30 variational desc... of...)
X a Banach space, � 6= 
 � X; x 2 
; U a nbhd of x:

(i) Given x� 2 X�; assume 9 a function S : U ! R; Fréchet di¤erentiable at x; S 0 (x) = x�

and S achieves a local maximum relative to 
 at x: Then x� 2 bN (x; 
) : Conversely,
for every x� 2 bN (x; 
) ; 9 a function S : X ! R; Fréchet di¤erentiable at x;
S 0 (x) = x� and S achieves a local maximum 0 relative to 
 at x:

(ii) Assume X admits a Fréchet smooth renorm. Then for every x� 2 bN (x; 
) there is a
concave Fréchet smooth function S : X ! R that acheives a unique global maximum
relative to 
 at x and S 0 (x) = x�:

(iii) Assume X admits an S-smooth bump function, where S 2fF ;LF ;LC1g : Then, for
any x� 2 bN (x; 
) 9 an S-smooth function S : X ! R such that (ii) holds.

Proposition 4 (1.31: a...)bN a prenormal structure on X (i.e., bN (�; 
) : X � X�; x =2 
 =) bN (x;
) = �;bN (x; 
) = bN �
x; e
� if 
; e
 coincide near x).

Assume:
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(M) 8x� 2 X�; " > 0; u 2 
 \B (x; ") a local minimum of the function

 (x) = hx�; x� xi+ " kx� xk

on 
 9 a v 2 u 2 
 \B (x; ") such that

�x� 2 bN (v; 
) + �BX� 8� > ":

Then
N (x; 
) � N (v; 
) := lim

x!x
bN (x; 
) :

2 Coderivatives of Set Valued Mappings (1.2)

Here X; Y are Banach spaces, F : X � Y is a set valued mapping (lower case letters such
as f are used to denote single valued mappings).

� F is closed valued (convex valued,...etc.) means that F (x) is closed (convex,...etc.)

� domF := fx 2 X : F (x) 6= �g ;

� ranF := fy 2 Y : F�1 (y) 6= �g ;

� kerF := fx 2 X : 0 2 F (x)g ;

� grF := f(x; y) 2 X � Y : y 2 F (x)g : The norm on X � Y is taken as k(x; y)k =
kxk+ kyk :

� If 
 � X; F (
) := fy 2 Y : F�1 (y) \ 
 6= �g

� If � � Y; F�1 (�) := fx 2 X : F (x) \� 6= �g

� F�1 : Y � X is the set valued mapping de�ned by F�1 (y) := fx 2 X : y 2 F (x)g

� domF�1 = ranF; ranF�1 = domF

� grF�1 := f(y; x) 2 Y �X : (x; y) 2 grFg = f(y; x) 2 Y �X : x 2 F�1 (y)g

� F is positively homogeneous if 0 2 F (0) and F (�x) � �F (x) 8x 2 X and all
� > 0:

� F is positively homogeneous () grF is a cone in X � Y:

� If F is positively homogeneous we de�ne

kFk := sup fkyk : y 2 F (x) ; kxk � 1g :
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2.1 Basic De�nitions and Representaions (1.2.1)

De�nition 5 (1.32: coderivatives)
F : X � Y; domF 6= �:

(i) The "-coderivative (" � 0) of F at (x; y) 2 grF is de�ned by

bD�
"F (x; y) : Y � � X�;bD�

"F (x; y) y
� =

n
x� 2 X� : (x�;�y�) 2 bN" ((x; y) ; grF )o :

The 0-coderivative is sometimes called the pre-coderivative and is denoted bD�F (x; y).

(ii) The normal coderivative of F at (x; y) 2 grF is de�ned by

D�
NF (x; y) : Y � � X�;

D�
NF (x; y) y

� = w� � lim
(x;y)!(x;y);
y�
w�!y�;
"!0+

bD�
"F (x; y) y

�

=
n
x� 2 X� : 9 (xn; yn)

grF! (x; y) ; y�n
w�! y�; "n ! 0+

; (x�n;�y�n) 2 bN"n ((xn; yn) ; grF ) ; x�n w�! x�:
o

= fx� 2 X� : (x�;�y�) 2 N ((x; y) ; grF )g :

If (x; y) =2 grF we put D�
NF (x; y) y

� = � 8y� 2 Y �:

(iii) The mixed coderivative of F at (x; y) 2 grF is de�ned by

D�
MF (x; y) : Y � � X�;

D�
MF (x; y) y

� = w� � lim
(x;y)!(x;y);
y�!y�;
"!0+

bD�
"F (x; y) y

�

=
n
x� 2 X� : 9 (xn; yn)

grF! (x; y) ; y�n ! y�; "n ! 0+

; (x�n;�y�n) 2 bN"n ((xn; yn) ; grF ) ; x�n w�! x�:
o

Examples 1. De�ne F : R� R by

F (x) =

� �
�
p
1� x2;

p
1� x2

�
; �1 � x � 1

� otherwise
:

bD�F (1; 0) y� =

�
[0;1) ; y� = 0
� otherwise

;

bD�F (1; 1) y� =

�
� y�; y� � 0
� otherwise

:
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2. De�ne F : R� R by

F (x) =

�
[0; 1] ; 0 � x � 1
� otherwise

:

bD�F (0; 0) y� =

�
(�1; 0] ; y� � 0
� otherwise

;

bD�
"F (0; 0) y

� =

8><>:
�; y� < �"�

�1;
p
"2 � y�2

i
; y� 2 [�"; 0]

(�1; "] otherwise

:

3. De�ne f : R! R by f (x) = x2

4. De�ne F : R� R by F (x) = [� jxj ;1)
5. De�ne F : [0; 1]� [0; 1] by F (x) = [0; 1]

� The indicator mapping:

 � X; the indicator mapping 4 (�; 
) : X ! Y is de�ned by

4 (x; 
) =
�
0 2 Y if x 2 

� otherwise

:

� gr4 = 
� f0g :

Proposition 6 (1.33 coderivative of the indicator mapping)

bD�
"4 (x; 
) (y�) = bN"4 (x; 
) 8y� 2 Y �

D�
N4 (x; 
) (y�) = D�

M4 (x; 
) (y�) = N (x; 
) 8y� 2 Y �:

� Inner semicontinuity:
F : X � Y is inner semicontinuous at x 2 domF if

F (x) = lim
x
domF! x

F (x)

=
n
y 2 Y : 8xk

domF! x 9 yk 2 F (xk) ; yk ! y
o
:

Theorem 7 (1.34 extremal peroperty of convex valued multifunctions)
If F : X � Y is inner semicontinuous at x 2 domF and convex valued around x then

for any (x; y) 2 grF and any y� 2 domD�
NF (x; y)

hy�; yi = min
y2F (x)

hy�; yi :
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� bD�F (x; y) (y�) � D�
MF (x; y) (y

�) � D�
NF (x; y) (y

�)8y� 2 Y �:

� All three functions are positively homogeneous.

� The �rst inclusion is oftern strict.

� The second inclustion can be strict in in�nite dimensional spaces.

De�nition 8 (1.36 graphical regularity of multifunctions)
F : X � Y; (x; y) 2 grF:

(i) F is N-regular at (x; y) if D�
NF (x; y) =

bD�F (x; y) :

(ii) F is M-regular at (x; y) if D�
MF (x; y) =

bD�F (x; y) :

� F is N -regular at (x; y) if and only if grF is normally regular.

� F : X � Y is convex graph if grF is a convex subset of X � Y:

Proposition 9 (1.37 coderivatives of convex-graph multifunctions)
Let F : X � Y be convex graph. Then F is N-regular at (x; y) 2 grF: Furthermore,

for any y� 2 Y �

D�
MF (x; y) (y

�) = D�
NF (x; y) (y

�)

=

�
x� 2 X� : hx�; xi � hy�; yi = max

(x;y)2grF
hx�; xi � hy�; yi

�
:

Theorem 10 (1.38 coderivatives of di¤erentiable mappings)
Suppose f : X ! Y is Fréchet di¤erentiable at x: Then

bD�f (x) y� = ff 0 (x)� y�g 8y� 2 Y �:

If f is strictly di¤erentiable at x then

D�
Nf (x) y

� = D�
Mf (x) y

� = ff 0 (x)� y�g 8y� 2 Y �

i.e. f is N-regular.

Corollary 11 (1.39 coderivatives of linear operators)
If A 2 L (X;Y ) then A is N-regular and

D�
NA (x) y

� = D�
MA (x) y

� = fA�y�g 8y� 2 Y �; x 2 X:
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2.2 Lipschitzian Properties (1.2.2)

In this subsection coderivative conditions are obtained to ensure Lipschitzian properties
of mappings.

� For 
1;
2 subsets of a metric space Z, let

D (
1;
2) = sup
x2
1

d (x;
2) :

The Hausdor¤ distance dH (
1;
2) beteen 
1 and 
2 is de�ned to be

dH (
1;
2) = max fD (
1;
2) ; D (
2;
1)g :

� It can be shown that

dH (
1;
2) = inf f� � 0 : 
1 � 
2 + �B; 
2 � 
1 + �Bg :

� It can be shown that for all u; v 2 Z; 
 � Z

jd (u;
1)� d (u;
2)j � dH (
1;
2) ;

jd (u;
)� d (v;
)j � d (u; v) :

De�nition 12 (1.40 Lipschitzian properties of set valued mappings)
Suppose F : X � Y and domF 6= �:

(i) We say that F is Lipschitz-like on U � X relative to V � Y if U; V are nonempty
and there exists an ` � 0 such that

F (x) \ V � F (u) + ` kx� ukBY 8x; u 2 U (1)

(ii) We say that F is locally Lipschitz-like around (x; y) 2 grF with modulus ` � 0 if
there exist nbhds U of x and V of y such that (1) holds. The in�mum of all ` � 0 is
called the exact Lipschitzian bound of F around (x; y) and is denoted by lipF (x; y) :

(iii) We say that F is Lipschitz continuous on U � X if (1) holds with V = Y: Further-
more, F is called locally Lipschitzian around x with exact bound lipF (x) if V = Y
in (ii).

� F is locally Lipschitzian on U � X if and only if

dH (F (x) ; F (y)) � ` kx� uk 8x; u 2 U;

Theorem 13 (1.41 scalarization of the Lipschitz-like properties)
Suppose F : X � Y and (x; y) 2 grF: TFAE

(a) F is locally Lipschitz-like around (x; y) :
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(b) The function � : X � Y ! R de�ned by

� (x; y) = d (y; F (x))

is locally Lipschitzian around (x; y) :

� The property of locally Lipschitzian around x =) the property of locally Lip-
schitzian around (x; y) :

� lipF (x) � sup flipF (x; y) : y 2 F (x)g :

� The converse inequality holds in the case given in Theorem 1.42 below.

� F : X � Y is locally compact around x 2 domF if there exists a nbhd O of x and
a compact set C � Y such that F (O) � C:

� F is closed (more precisely F is closed graph) at x 2 domF if 8y =2 F (x) there
exists a nbhd U of x and a nbhd V of y such that

F (x) \ V = � 8x 2 U:

Theorem 14 (1.42 Lipschitz continuity of locally compact mutlifunctions)
Suppose F : X � Y is closed at and locally compact around x 2 domF: Then F is

locally Lipschitzian around x i¤ it is locally Lipschitz-like around (x; y) for all y 2 F (x) :
In this case

lipF (x) = max flipF (x; y) : y 2 F (x)g :

Theorem 15 (1.43 "-coderivatives of Lipschitz mappings)
Suppose F : X � Y; x 2 domF and " � 0:

(i) If F is locally Lipschitz-like around (x; y) 2 grF with modulus ` � 0 then there exists
� > 0 such that

sup
n
kx�k : x� 2 bD�

"F (x; y) y
�
o
� ` ky�k+ " (1 + `)

8x 2 B (x; �) ; y 2 F (x) \B (y; �) ; y� 2 Y �:
(2)

Therefore,

lipF (x; y) � inf
�>0
sup

n


 bD�F (x; y)



 : x 2 B (x; �) ; y 2 F (x) \B (y; �)o :

(ii) If F is locally Lipschitzian around x then there exists a � > 0 such that (2) holds
8x 2 B (x; �) ; y 2 F (x) ; y� 2 Y �: Therefore,

lipF (x) � inf
�>0
sup

n


 bD�F (x; y)



 : x 2 B (x; �) ; y 2 F (x)o :
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Theorem 16 (1.44 mixed coderivatives of Lipschitzian mappings)
Suppose F : X � Y; x 2 domF and " � 0:

(i) If F is locally Lipschitz-like around (x; y) 2 grF then

kD�
MF (x; y)k � lipF (x; y) <1:

Therefore,
D�
MF (x; y) (0) = f0g :

(ii) If F is locally Lipschitzian around x then

sup
y2F (x)

kD�
MF (x; y)k � lipF (x) :

Therefore,
D�
MF (x; y) (0) = f0g 8y 2 F (x) :
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