KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES MATH 260 Exam # 3 May 6, 2006

NAME:

ID#:

SHOW ALL YOUR WORK

1. (5points) In the vector space \mathbb{R}^4 define the subsets

 W_1 = the set of all vectors $v = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 such that $x_1 + x_2 = x_3 - x_4$,

 W_2 = the set of all vectors $v = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 such that $x_1 x_2 = x_3 x_4$.

Determine (giving reasons) whether or not W_1 and W_2 are subspaces of \mathbb{R}^4 .

2. (5points) Is the vector v = -7, 7, 11 in the span of the vectors $v_1 = (1, 2, 1), v_2 = (-4, -1, 7), v_3 = (-3, 1, 3)$? If so, express v as a linear combination of v_1, v_2, v_3 .

3. (5points) If v_1, v_2, v_3 are linearly independent vectors in a vector space v, show that the vectors $u_1 = v_2 + v_3$, $u_2 = v_1 + v_3$, $u_3 = v_1 + v_2$ are also linearly independent.

4. (5points) Find a basis for the solution space of the homogeneous linear system

$$\begin{aligned} x_1 - 3x_2 - 9x_3 - 5x_4 &= 0\\ 2x_1 + x_2 - 4x_3 + 11x_4 &= 0\\ x_1 + 3x_2 + 3x_3 + 13x_4 &= 0 \end{aligned}$$

- 5. (5points) Determine (with reasons) whether or not the functions f(x) = x, g(x) = |x| are linearly independent on:
 - (a) the real line,
 - (b) the interval $I = (0, \infty)$.

6. (5points) Suppose 1, r, s are all distinct numbers. Show that

$$W(e^{x}, e^{rx}, e^{sx}) = e^{(1+r+s)x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & r & s \\ 1 & r^{2} & s^{2} \end{vmatrix}$$

and hence, show that the functions e^x, e^{rx}, e^{sx} are linearly independent on the real line.