1 The vector space R" and subspaces

A vector v € RY is an n-tuple v = (v1,vq, - -+ , vy) . We will also write v as a column vector
in the form
U1
V2
vV =
UN

1.1 Operations

We define two operations on vectors in R : vector addition and scalar multiplication.
a) Vector Addition:
Let v = (v1,v2, -+ ,un), W = (wy,ws, -+ ,wy) be two vectors in RY. We define

V+w = (v +wp,ve + Wy, Uy + WN) .

b) Scalar Multiplication:
Let v = (v1,v9,+ -+ ,vy) € RY and ¢ € R be a scalar. The scalar multiplication of ¢ and
v is defined by

cv = (cvy, cug, -+ ,coN) .

1.2 Properties
Let u,v,w €R" ¢, d € R. We have the following properties:
l.u+v=v+u
2.u+(v+w)=(u+v)+w.
3. u+ 0 = u. Here 0 is the zero vector in RY; 0 = (0,0,---,0).
4. u+ (—u) =0.
5. c(u+v)=cv+ cu.
6. (c+d)u=cu+du.
7. (cd)u =c(du)=d (cu).

1.3 Length of a vector
The length of a vector v = (vy,vq, -+ ,vy) € RV is defined by

VI = \foR + a3+ o0k



1.4 Linear Dependence and Independence

The vectors vy, v, -+, vy € RY are called linearly dependent if there exist scalars ay,a, -+ -, ay, €
R, not all zeros such that
a1Vitagve + - - + ap vy = 0. (1)
Otherwise vy, vy, -+, vy are linearly independent.
Observe that equation (1) can be expressed as a linear system of N equations in the k
unknowns ag,qe, - -+, ag. The vectors vy, vy, -+, vy are linearly independent if and only if
the linear system (1) has only the trivial solution ay=ag = -+ = a3, = 0.

1.5 Examples

1. InR3let vi = (2,3, —1),vo = (2,1,1),v3 = (4,4,0) . To decide if v{, vo, v3 are linearly
dependent we try to find nontrivial solutions of the system

a1Vi+agvy + 3V3z = 0. (2)

We now write the above equation as a linear system of 3 equations in 3 unknowns.

2 2 4
a1Vi+Q9Vy + (igVy = «Qq 3 + o 1 + a3 4
—1 1 0

2(,1{1 —|— 20&2 —|— 4&3
= 30&1 + a9 + 4&3
—a + Qg

We then want to solve the homogeneous system

20[1 + 20(2 +4043 =0

30&1+052+4063 =0
— Q7 + [0D) =0
In matrix form we have
2 2 4 (03] 0
3 1 4 a | =10 (3)
-1 10 o3 0
The matrix of coefficients
2 2 4
3 1 4
-1 10
has the echlon form
11 2
01 1
000



Thus we have a3 as a free variable. This means that the vectors vy, vy, v3 are linearly
dependent. To find nonzero values for oy, as, ag such that equation (2) is satisfied, we
find all solutions of (3) first. For this we set a3 =t and solve by back substitution to
get ap = —t and «; = —t. Therefore, for any value of t we have

—tV1 — th + th =0.

Let us verify that.

2 2 4 —2t =2t + 4t 0
—t| 3 —t| 1| +t|4|=| -3t—t+4 | =0
—1 1 0 t—t+0 0

as we expected.

Observe that we could also show that the system (2) has nontrivial solutions by check-
ing the determinant of the matrix of coefficients

11 2
01 1=0.
000

However, this works only if the matrix of coefficients is square so that we can compute
the determinant. The more general approach so, is to reduce to echlon form.

. As a second example, we take the vectors vi = (2,3, —1,1),vy = (2,1,1,-2),v3 =
(4,4,0,5) in R, We arrive at the system (3) simply by listing these vectors in columns.
Thus we get

2 2 4 o 0
3 1 4 ! 0
11 0] ]*®]| 7o (4)
1 —2 5| L% 0
The echlon form of the matrix of coefficients is
11 2
01 1
0 01
0 00

Since there are no free variables, the system (4) has only the trivial solution. Therefore
V1, Vo, V3 are linearly independent in R%.

We conclude from these two examples that in order to check for the linear independece

of the vectors vy, vy, -+, v € RY we list them as columns in a matrix A = [v; vy -+ vy,
reduce to echlon form (or compute the determinant if applicable) and see if we have free
variables or not. More pricisely, if we let  be the number of nonzero rows in the echlon form
of the matrix A, then the number of free varialbes n is given by

n==k—r.



Observe that, since A contains N rows, r < N. Consequenly, if £ > N then n > 0 and
the vectors vi,v,,---,v; are linearly dependent in RY. For example, the vectors v; =
(0,1), vy = (2,—-3),v3 = (1,2) are linearly dependent in R? for in this case the homogeneous

system is
02 1][™] TJo
1 =3 2|1 ol
ag

The echlon form of the matrix of coeflicients is
1 -3 2
0o 2 1 |-

There are 2 nonzero rows in this echlon form (corresponding to the leading variables oy, as)
and g is free. Therefore, the vectors vy, vo, v are linearly dependent.

1.6 Subspaces of RV

A set V of vectors in R¥ is called a subspace if it has the following two properties

a) If u,v € V, then u+v € V (we say that V is closed under addition)

b) If u € V and ¢ € R then cu € V (we say that V' is closed under scalar multiplication)

In words, we say that a subset V' of R is a subspace if it is closed under vector addition
and scalar multiplication. The two properties can be checked at once by showing that if
u,vc Vandc€Rthenu+cv € V. Clearly, V = R is a subspace. It is the maximal
subspace of RY. Also, V = {0} is a subspace. It is the minimal subspace of RY. These two
extreme cases are trivial cases.

1.7 Examples

1. Let V = {(z1,72,73) ER®: 29 =0}. Let u = (uy,0,u3),v = (v1,0,v3) € V and
c € R then u+ cv = (uy,0, u3) + ¢ (v1,0,v3) = (ug + cvy, 0, u3 + cvs) . Since the second
component is zero, we see that u + cv € V. Therefore, V is a subspace of R3.

2. V = {(z1,79,23,74) € R*: 21 + 25 = 1}. The two vectors u = (1,0,0,0) and v =
(0,1,0,0) are in V, but u+v = (1,1,0,0) ¢ V since the sum of the first two components
is not 1. Thus V is not closed under vector addition and, therefore, is not a subspace.

1.8 Solution Subspaces

Let A be an M x N matrix. We can regard any solution X of the homogeneous linear system
AX =0 (5)

as a vector in RY. Let V be the set of solutions of the equation (5). We will show that V is
a subspace of RV, Let X,Y € V (i.e., X, Y are solutions of (5)) and ¢ € R. We need to show
that X + ¢Y is a solution of (5). A(X 4+¢Y) =AX +cAY =0+¢0 =0. Thus X +cY € V.



1.9 Examples

1. Let V = {(21, 22, 73,74) € R* : 1y + 24 = 0,21 — 225 + 323 — 24 = 0} . Observe that
the two conditions describing V' can be written as a homogeneous system
T +x4 = 0
ZE1—21’2+3JI3—$4 =0
Or, in matrix form as
T
1 0 0 1 zy | |0
T4
Therefore, the vectors in V' are solutions of the homogeneous system (6). Thus V' is a
subspace of R*.
2. The condition defining the set V' in the second example in Section 1.7
T
(1 100]]™]=1
z3
Ty
is not homogeneous. That is why V is not a subspace of R*.
3. LetV = {(a:l,xg, coay) ERN tagy +aswy + -+ anay = 0} . The condition defin-
ing V' can be written in the matrix form (5) where
A= [al as --- GN}
and
T1
x
xX=|"
TN
It follows that V is a subspace of RY.
2 Linear Combinations and Span
A linear combination of vectors vi,v,, -+, vy € RV is a vector v of the form

V =C1Vq + Vo + -+ Vi, (7)



where cy,co,- -+ , ¢ are scalars in R. For example, a linear combination of the vectors v; =
(2,3,—1,1), vy = (2,1,1,—-2) € R* is
v = 2vi —3vy=2(2,3,-1,1)—-3(2,1,1,-2)
= (-2,3,-5,8).
Observe that v is itself a vector in R*. Thus linear combination of vectors always produce a
vector in the same space.

The first question we are interested in is: given a set of vectors vy, v, -+, v, € RY and
another vector v € RY | is it possible to express v as a linear combination of vy, v, -+, vy?
In other words, can we find scalars ¢;,ca, - - - , ¢ € R such that equation (7) holds? To answer

1

2
this question, let A =[vy vo -+ viJand C' = | | . Then we can rewrite equation (7) in

Ck,
the form
AC =,

which shows that the ansewer is in solving the above linear system for C. As usual, we write
the augmented matrix [A v], reduce it to echlon form and determine the vector(s) C' (if any)
that satisfy the above linear system.

2.1 Examples

1. To determine whether the vector v = (2,—6,3) in R? is a linear combination of the
vectors vi = (1,—2,—1),vy = (1,—5,4), we write the linear system

11 ) 2
-2 -5 { ! } = | —6
~1 4 “

The augmented matrix of this system is

1 1 2
-2 -5 -6
-1 4 3
The reduced row echlon form is
1 00
010
0 01

As you can see, the system is inconsistent. Therefore, v cannot be written as a linear
combination of vy , vs.

2. We repeat Example 1 for the vectors v = (=7,7,11),v; = (1,2,1),vy = (4,—1,2),
vz = (—3,1,3). We have the system

1 4 -3 C1 =7
2 -1 1 |l =1 7
1 2 3 C3 11



The augmented matrix is

1 4 -3 —7
2 -1 1 7
1 2 3 11
The reduced row echlon form is
1 0 0 2
01 00
0013

This gives ¢; = 2,¢3 = 0,¢3 = 3. Thus v =2v; +3 vy =2(1,2,1) +3(-3,1,3) =
(—7,7,11).

2.2 The Span of a Set of Vectors

The set W of all linear combinations of of the vectors vi,v,, -+, v, € RV is called the span
of the vectors vy, v,, -+, vi. We use the notation

W =span{vy, vy, -+, Vi}.
Theorem 1 The span W of the vectors vi,v,,--- ,vi € RN is a subspace of RY.
Proof. Let u,v € W and c € R. Then

u = C1Vi+CaVa, -+ CpVi,
vV = d1V1+d2V2, O dkvk.
u+cv = (¢ +cdy)vit (o +eds) vo+ -+ + (¢ + cdi) vi

= ejviteava, -+ epvy,
where e; = (¢1 +c¢dy),ea = (ca+cdy), - ,er, = (cx + cdy) . Therefore, u 4 c¢v is a linear
combination of vy, vy, -+, v; and, hence, u+cv €W. m
The question raised in the previous section about whether a given v can be written as
a linear combination of vectors vy, vy, -+, vy, can be rephrased by asking whether a given
vector v is in the span of the vectors vy, vy, -+, V.

2.3 Linear Independence in RY

Suppose we are given the vectors vi,v,, -+, v, € RY and we know that they are linearly
independent. Let A = [vy vy -+ vg], 7 =# of nonzero rows in the echlon form of A
and n = k — r =# of free variables in echlon form of A. Since vy,v,, -, vy are linealy

independent, n = 0. Since r < N, we must also have £k < N. If £ = N, then n = 0 gives
r = N and there are no zero rows in the echlon form of A.If k < N, then n = 0 gives r = k
and the last N — k rows of the echlon form of A are all zeros.



