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1 Wavelet Bases

The continuous wavelet transform o¤ers the capability of analysing the local behvior of a
signal. The translations and dilations of wavelets

DaTb 

for a > 0 and b 2 R provide "more than enough" bases through which reconstruction is
possible. The purpose of this chapter is to develop a set of bases consisting of wavelets
which will span L2 (R) and at the same time retain the capability of local signal analysis.
This will be accomplished by restricting the scales a to the set f2jgj2Z and the translations
b to the set fkgk2Z : Thus  j;k will denote

DjTk (t) =
p
2j 

�
2
j

(t� k)
�
:

Observe the slightly changed de�nition of the dilation operator. Now higher values of j
stand for higer frequencies, or small scales.

2 Multiresolution Analysis

Roughly speaking, a multiresolution analysis is the representation of a signal f by a
sequence of signals which capture progressively �ner details of f: To introduce the exact
de�nition of a multiresolution analysis we need �rst the follwoing basic concepts and
notation.
The frequency modulators en For convenience we will de�ne the frequency

modulator functions en by
en (!) = e2�in!; 8! 2 R:

Dense Subspace A subspace M of L2 (R) is said to be dense in L2 (R) if given
any f 2 L2 (R) and any � > 0 there exists a g 2M such that

kf � gk < �:

Closed Subspace A subspace M of L2 (R) is said to be closed in L2 (R) if given
f 2 L2 (R) there exists a (necessarily unique) function g 2M such that

hf � g; hi = 0 8h 2M: (1)
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Orthogonal projections Let M be a closed subspace of L2 (R) : The orthogonal
projection PM : L2 (R)! M is de�ned by PMf = g; where g is the function in (1). The
most important properties of PM are:

(i) P 2M = PM :

(ii) hPMf; gi = hf; PMgi 8f; g 2 L2 (R) :

The Span of a set of functions The span of a given sequence of functions
ffngn2Z ; say in L2 (R) ; is de�ned to be the set of �nite linear combinations of elements
of ffngn2Z : Put di¤erently, we say that

N = span ffngn2Z

if every element g 2 N can be written in the form

g = �1fn1 + �2fn1 + : : :+ �mfnm

where m and the complex constants �1; �2; : : : ; �m possibly depend on g: Observe that
N is itself a subspace of L2 (R) :
Orthonormal basis (ONB) Let M be a (closed) subspace of L2 (R) : The or-

thonormal sequence of functions f�ngn2Z is called an orthonormal basis for M if every
f 2M has the unique decomposition

f =
X
n

hf; �ni �n:

We are now in a position to introduce the de�nition of a multiresolution analysis.

De�nition 1 (multiresolution analysis MRA)
A sequence fVjgj2Z of closed subspaces of L2 (R) is called a multiresolution analysis if

1. Vj � Vj+1 8j 2 Z:

2. [j2ZVj is dense in L2 (R) :

3. \j2ZVj = f0g :

4. f 2 Vj if and only if D1f 2 Vj+1:

5. There exists a function ' 2 V0 called the associated scaling function such that
fTn'gn2Z forms an ONB for V0:

The following projections are associated with an MRA.

De�nition 2 (approximation and detail operators)
Suppose fVjgj2Z is a multiresolution analysis.

(i) The sequence of orthogonal projections Pj := PVj for all j 2 Z is called the sequence
of approximation operators.
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(ii) The sequence of orthogonal projections Qj := Pj+1 � Pj for all j 2 Z is called the
sequence of detail operators.

It follows from the de�nition of an MRA that for :

1. kPjfk � kfk for all j 2 Z and all f 2 L2 (R) :

2. kPj+1fk � kPjfk for all j 2 Z and all f 2 L2 (R) :

3. For all f 2 L2 (R) ; Pjf ! 0 as j ! �1:

4. For all f 2 L2 (R) ; Pjf ! f as j !1:

5. For every f 2 V0 we can write

f =
X
n

hf; Tn'iTn':

In an MRA, the sequence fTn'gn2Z is called an orthonormal system of translates.
What conditions should a function ' 2 L2 (R) satisfy in order that fTn'gn2Z be an
orthonormal system of translates? The following lemma gives the answer.

Lemma 3 (conditions for orthonormal systems of translates)
fTn'gn2Z is an orthnormal system of translates i¤X

n

jb' (! + n)j2 = 1 8! 2 [�1; 1] : (2)

Proof. Suppose fTn'gn2Z is an orthnormal system of translates. Then

�k;0 = hTk'; 'i =
DdTk'; b'E

= hekb'; b'i = Z 1

�1
jb' (!)j2 e2�ik!d!

=
X
n

Z n+1

n

jb' (!)j2 e2�ik!d!
=

X
n

Z 1

0

jb' (! + n)j2 e2�ik!d!

=

Z 1

0

X
n

jb' (! + n)j2 e2�ik!d!:

The sequence f�k;0gk2Z is nothing but the Fourier series coe¢ cients for the function 1:
Therefore, by the uniqueness of the Fourier series,

P
n jb' (! + n)j2 = 1 8! 2 [0; 1] :

The same steps can be repeated to obtain a Fourier series expansion on [�1; 0] and getP
n jb' (! + n)j2 = 1 8! 2 [�1; 0].
The only if part can be shown by reversing the above steps.
In the case of compactly supported functions, condition (2) can be relaxed as follows.

3



Lemma 4 (relaxed scaling functions)
Suppose '1 2 L2 (R) has compact support and satis�es

A �
X
n

jb'1 (! + n)j2 � B 8! 2 [�1; 1]

and for some A;B > 0: Then there is a function ' 2 L2 (R) such that

(i) fTn'gn2Z is an orthnormal system of translates.

(ii) span fTn'g = span fTn'1g :

The functions '1 and ' in the above lemma are related by

b' (!) = b'1 (!)qP
n jb'1 (! + n)j2

:

Typically, an MRA is constructed by choosing a function ' 2 L2 (R) satisfying (2),
de�ning the space V0 by

V0 = span fTn'g ; (3)

the spaces Vj by
Vj = fDjf : f 2 V0g ; j 2 Z; (4)

and then proving that Conditions 1-3 of De�nition 1 hold.

Exercise 1 De�ne 'jk by 'jk = DjTk': Prove that, for each j 2 Z;
�
'jk
	
k2Z is an

orthonormal basis for Vj:

3 Properties of the Scaling Function

We present in this section some important properties of the scaling function for an MRA.

Theorem 5 (necessary condition for the scaling function)
Suppose fVjgj2Z is an MRA in L2 (R) with associated scaling function ' 2 L1 (R) \

L2 (R) : Then b' is continuous and ����Z 1

�1
' (t) dt

���� = 1
Proof. Let f 2 L2 (R) be such that bf is continuous and supp bf � [�R;R] : Then since�
'jk
	
k2Z is an orthonormal basis for Vj;

Pjf =
X
k



f; 'jk

�
'jk

=
X
k

D bf;D�jekb'E'jk:
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Taking the Fourier transform on both sides we get

dPjf = D�j

 b'X
k

Db'Dj
bf; ekE ek! :

Since suppDj
bf � [�R=2j; R=2j] ; then, for su¢ ciently large j; R=2j � 1: Hence, the series

on the right is the Fourier series expansion of b' D2j
bf in L2 (0; 1) : Hnence,

dPjf = D�j

�
jb'j2Dj

bf�
=

p
2jD�j jb'j2 bf:

Taking the limit as j ! 1; and noting that Pjf ! f; dPjf ! bf and p2jD�j jb'j2 (!) =
jb'j2 � !

2j

�
! jb' (0)j2 we get bf (!) = jb' (0)j2 bf (!) :

Therefore,
jb' (0)j = 1; (5)

which is the same as ����Z 1

�1
' (t) dt

���� = 1:
Corollary 6 (properties of ')
Assume fVjgj2Z is an MRA in L2 (R) with associated scaling function ': Then b' (n) =

0 for all n 2 Z:

Proof. This follows immediately from (2) and (5).

Lemma 7 (the two scale dilation equation)
Suppose fVjgj2Z is an MRA in L2 (R) with associated scaling function ': Then there

exists a square summable sequence fhkgk2Z such that

' (t) =
X
k

hk'1;k (t) : (6)

Furthermore, b' (!) = m0

�!
2

� b'�!
2

�
; (7)

where
m0 =

p
2
X
k

hkek (8)

and where the in�nite sum exists for all ! 2 R:
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Proof. Equation (6) follows immediately from the facts that V0 � V1 and that
�
'1;k

	
k2Z

is an orthomormal basis for V1: We explicitly have

hk =


'; '1;k

�
8k 2 Z:

Taking the Fourier transform on both sides of (6) gives

b' (!) =
X
k

hk \D1Tk' (!)

=
X
k

hkD�1dTk' (!)
=

X
k

hkD�1e
2�ik!b' (!)

=
p
2
X
k

hke
�ik!b'�!

2

�
= m0

�!
2

� b'�!
2

�
:

This is equation (7) with the function m0 given by (8).
Some elementary properties of the function m0 are given in the following lemma.

Lemma 8 (properties of m0)
Let m0 be the function de�ned by (8). Then the following properties hold.

(i) m0 is a periodic function of period 1:

(ii) m0 (n) = 1 8n 2 Z:

(iii) We have
jm0 (!)j2 +

��T1=2m0 (!)
��2 = 1 8! 2 R:

(iv) m0

�
2n+1
2

�
= 0 8n 2 Z:

Proof. We only show (iii). Since fTn'g is an orthonormal system of translates, 8! 2
[�1; 1]

1 =
X
n

jb' (! + n)j2 =
X
n

����m0

�
! + n

2

�����2 ����b'�! + n

2

�����2
=

X
k

����m0

�
! + 2k

2

�����2 ����b'�! + 2k2

�����2 +X
k

����m0

�
! + 2k + 1

2

�����2 ����b'�! + 2k + 12

�����2
=

���m0

�!
2

����2X
k

���b'�!
2
+ k
����2 + ����m0

�
! + 1

2

�����2X
k

����b'�! + 12 + k

�����2
=

���m0

�!
2

����2 + ����m0

�
! + 1

2

�����2 :
For ! 2 [�1=2; 1=2] we may replace ! by 2! in the above equation, which yields the result
for ! 2 [�1=2; 1=2]. The period 1 of m0 implies the result for all ! 2 R:
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De�nition 9 (scaling �lter)
Suppose fVjgj2Z is an MRA in L2 (R) with associated scaling function ': The sequence

fhkgk2Z is called the scaling �lter associated with ': The function m0 (!) given by (8) is
called the auxiliary function associated with ':

3.1 Orthomormal Wavelet Bases

We show in this section how an MRA gives rise to a wavelet analysis. So, we assume that
fVjgj2Z is an MRA in L2 (R) with associated scaling function ': Since Vj � Vj+1 we may
write

Vj+1 = Vj �Wj

= Vj�1 �Wj�1 �Wj

= � � �

=

jM
k=�1

Wk

and thus, we have the decompositoin of L2 (R) into a seuquence of orthogonal subspaces

L2 (R) =
M
j2Z

Wj:

We want to show that the sequence of subspaces fWjgj2Z is spanned by the dilations and
translations of a single function  : This function is called

Exercise 2 Prove that if fTn gn2Z is an ONB for W0 then
�
 ij
	
n2Z is an ONB for Wj;

where  ij = DjTn :

Thus it is enogh to construct the function  whose translations form an ONB for W0:
Since

W0 = V1 	 V0;

 is required to satisfy the two conditions:

1.  2 V1;

2.  ?V0:

The �rst of these two conditions implies that  can be written in terms of the basis�
'1;n

	
n2Z for V1; that is

 =
X
n

gnD1Tn';

or,
D�1 =

X
n

gnTn':
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Taking the Fourier Transform on both sides we get

D1
b =

X
n

gnenb'
= m1b';

where
m1 (!) =

X
n

gne
2�in!: (9)

Therefore, b = D�1 (m1b') : (10)

The second condition means

h ; Tn'i = 0 8n 2 Z:

From this condition we get the following theorem.

Theorem 10 (determination of the function m1)
If  is orthogonal to V0 then

m1m0 + T1=2 (m1m0) = 0 (11)

on R:

Proof. For any n 2 Z we have

0 = h ; Tn'i =
Db ; enb'E

=

Z 1

�1
e�2�in!b (!) b' (!) d!

=

Z 1

�1
e�2�in!m1

�!
2

� b'�!
2

� b' (!) d!
=

Z 1

�1
e�2�in!m1

�!
2

� b'�!
2

�
m0

�!
2

� b'�!
2

�
d!

=

Z 1

�1
e�2�in!m1

�!
2

�
m0

�!
2

� ���b'�!
2

����2 d!
=

Z 1

0

e�2�in!
X
k

m1

�
! + k

2

�
m0

�
! + k

2

� ����b'�! + k

2

�����2 d!
=

Z 1

0

e�2�in!
�
m1

�!
2

�
m0

�!
2

�
+m1

�
! + 1

2

�
m0

�
! + 1

2

��
d!:

The last expression gives the Fourier coe¢ cients for the functionm1

�
!
2

�
m0

�
!
2

�
+m1

�
!+1
2

�
m0

�
!+1
2

�
:

Since all these coe¢ cients are zeros, we must have

m1

�!
2

�
m0

�!
2

�
+m1

�
! + 1

2

�
m0

�
! + 1

2

�
= 08! 2 [0; 1] (12)
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For ! 2 [0; 1=2] ; replacing ! by 2! in the above equation yeilds�
m1m0 + T1=2 (m1m0)

�
= 0

on [0; 1=2] : A similar argument shows that (12) holds also on [�1=2; 0] : The periodicity
of m1 and m0 yeilds the result on all of R:

De�nition 11 (the wavelet �lter)
Suppose fVjgj2Z is an MRA in L2 (R) with associated scaling function ': Any solution

m1of (11) is called the dual auxiliary function and its Fourier coe¢ cients fgkgk2Z given
by (9) is called the wavelet �lter. The function  de�ned by (10) is called the wavelet (or
the morher wavelet) determined by the MRA.

The following lemma gives a family of solutions of (11).

Lemma 12 A class of solutions of (11) is given by the formula

m1 = QT1=2m0; (13)

where Q 2 L2 (0; 1) with jQj = 1 and Q+ T1=2Q = 0:

If we choose
Q (!) = e2�i!

then (13) becomes X
n

gne
2�in! = e2�i!

X
n

hne
�2�in(!+1=2)

= e2�i!
X
n

(�1)n hne�2�in!

=
X
n

(�1)n hne�2�i(n�1)!

=
X
n

(�1)n�1 h1�ne2�in!

which holds identically on [0; 1=2]. This results in the relations

gn = (�1)n�1 h1�n 8n 2 Z:

Corollary 13 m1 (0) = 0:

Proof. For ! = 0; m1 (0)m0 (0) +m1

�
1
2

�
m0

�
1
2

�
= 0: Since m0 (0) = 1;m0

�
1
2

�
= 0;we

get m1 (0) = 0:

Corollary 14 b (0) = 0:
Proof. Follows immediately from equation (10) and the above corollary.
It now follows that

R
 = 0; i.e.,  is integrable, and, by the Reimann-Lebesgue

Lemma,
���b ���! 0 as j!j ! 1: In other words,  is a band-pass �lter.
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3.2 Wavelet Construction

To construct a wavelet  ; a suitable 2� periodic function G satisfying Theorem 10 has to
be chosen.
We show next that this choice of  produces an orthonormal basis for W0:

Lemma 15 Let f 2 V1 and de�ne F0 (!) :=
P

n f
0
ne
2�i!; where f 0n =



f; '0;n

�
and

F1 (!) :=
P

n f
1
ne
2�i!; where f 1n =



f; '1;n

�
: Then

D1F0 = F1m0 + T1=2 (F1m0)

on [0; 1=2] :

Proof. Since f =
P


f; 'n;1
�
'1;n =

P
f 1nD1Tn';

bf =
X

f 1nD�1enb'
= D�1b'X f 1nen

= D�1F1b':
Hence,

f 0n =


f; '0;n

�
= hf; Tn'i =

D bf; enb'E
=

Z 1

�1
e�2�in! bf (!) b' (!) d!

=
1p
2

Z 1

�1
e�2�in!F1

�!
2

� b'�!
2

� b' (!) d!
=

1p
2

Z 1

�1
e�2�in!F1

�!
2

�
m0

�!
2

� ���b'�!
2

����2 d!
=

1p
2

Z 1

0

e�2�in!
X
k

F1

�
! + k

2

�
m0

�
! + k

2

� ����b'�! + k

2

�����2 d!
=

Z 1

0

e�2�in!
�
F1

�!
2

�
m0

�!
2

�
+ F1

�
! + 1

2

�
m0

�
! + 1

2

��
d!:

Therefore,

p
2F0 (!) = F1

�!
2

�
m0

�!
2

�
+ F1

�
! + 1

2

�
m0

�
! + 1

2

�
8! 2 [0; 1]

For ! 2 [0; 1=2] we may replace ! by 2! in the above equation to obtain

D1F0 = F1m0 + T1=2 (F1m0)

on [0; 1=2] :

Theorem 16 If (13) holds, then the set fTn gn2Z is an ONB for W0:
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Proof. We calculateX
n

���b (! + n)
���2 =

X
n

�����m1

�
! + n

2

� b'�! + n

2

������2
=

���m1

�!
2

����2 + ����m1

�
! + 1

2

�����2
=

����m0

�
! + 1

2

�����2 + ���m0

�!
2

����2
=

����m0

�
! + 1

2

�����2 + ���m0

�!
2

����2 = 1;
where we used equation (13) to write jm1j = T1=2 jHj : This shows that fTn gn2Z is an
ONB.
Next we show that fTn gn2Z is complete in W0: Suppose f 2 W0 is orthogonal to

fTn gn2Z : Then f 2 V1 	 V0: Therefore, F0 = 0: By Lemma 15,

F1m0 = �T1=2F1m0: (14)

On the other hand we can show that

0 = hf; Tn i =
1p
2

�
F1m1 + T1=2 (F1m1)

�
;

giving
F1m1 = �T1=2 (F1m1) : (15)

Finally,since we also have
m1m0 = �T1=2m1m0; (16)

multiplying (14) by the conjgate of (16),

F1m1 jm0j2 = T1=2
�
F1m1 jm0j2

�
= T1=2 (F1m1)T1=2 jm0j2

= �F1m1T1=2 jm0j2 :

Since jm0j2 + T1=2 jm0j2 = 1;
F1m1 = 0:

Similarly,
F1m0 = 0:

Hence,

0 = jF1m0j2 + jF1m1j2

= jF1j2
�
jm0j2 + jm1j2

�
:

Therefore, F1 = 0 on [0; 1=2] : Consequently f 1n = 0 for all n 2 Z: Hence, f = 0 since
f 2 V1:
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