KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS MATH 202-11 Quiz # 3 December 16, 2009

1. For the differential equation $y'' + 4y' + 4y = 4\cos 2x + 3\sin 2x - 8$, (i) find the solutions of the homogeneous equation and (ii) find an annihilator of lowest order for the right hand side.

Solution:

(i) The auxiliary equation $m^2 + 4m + 4 = 0$ has the repeated m = -2. The homogenous solutions then are: $y_1 = e^{2x}$ and $y_2 = xe^{2x}$.

(ii) The operator $(D^2 + 4)$ kills both $\cos 2x$ and $\sin 2x$ and the operator D kills 8. Therefore, the required annihilator is D $(D^2 + 4)$.

2. Two roots of a cubic auxiliary equation with real coefficients are $m_1 = \frac{1}{2}$ and $m_2 = 1 + 3i$. What is the corresponding linear homogeneous differential equation?

Solution:

The auxiliary equation can be written as

$$\left(m - \frac{1}{2}\right) \left(m - (1+3i)\right) \left(m - (1-3i)\right) = 0$$
$$\left(m - \frac{1}{2}\right) \left(m^2 - 2m + 10\right) = 0$$
$$\left(2m - 1\right) \left(m^2 - 2m + 10\right) = 0$$
$$2m^3 - 5m^2 + 22m - 10 = 0,$$

from which we get the differential equation

$$2y''' - 5y'' + 22y' - 10y = 0.$$

<u>Remark</u>: observe that $(m - (\alpha + \beta i))(m - (\alpha - \beta i)) = m^2 - 2\alpha m + (\alpha^2 + \beta^2)$.