## 1 Sobolev Spaces for Higher Orders

Definition: Given an integer $m \geq 2$, we define the Sobolev space of order $m$ by

$$
\begin{aligned}
W^{m, p}(I) & =\left\{u \in L^{p}(I) \quad / \quad u^{\prime}, u^{\prime}, \ldots, u^{(m)} \in L^{p}(I)\right\} \\
& =\left\{u \in L^{p}(I) \quad / \quad u^{\prime} \in W^{m-1, p}(I)\right\}
\end{aligned}
$$

The derivatives are in the weak sense. We then set $H^{m}(I)=W^{m, 2}(I)$.
Properties: 1) It is easy to verify that $u \in W^{1, p}(I)$ if and only if there exists $m$ functions $g_{1}, g_{2}, \ldots, g_{m} \in L^{p}(I)$ such that

$$
\int_{I} u \varphi^{(j)}(x) d x=(-1)^{j} \int_{I} g_{j} \varphi d x, \quad \forall \varphi \in C_{0}^{\infty}(I)
$$

2) The space $W^{1, p}(I)$ equipped with the norm:

$$
\|u\|_{m, p}=\|u\|_{p}+\sum_{j=1}^{m}\left\|u^{(j)}\right\|_{p}
$$

is a Banach space.
3) The space $H^{m}(I)$ equipped with the inner product

$$
<u, v>_{m, p}=\int_{I}\left(u v+u^{\prime} v^{\prime}+\cdots+u^{(m)} v^{(m)}\right)(x) d x
$$

is a Hilbert space.
Theorem: $W^{m, p}(I)$ is separable for $1 \leq p<\infty$ and reflexive for $1<p<\infty$.
Theorem: $W^{m, p}(I)$ is continuously embedded in $C^{m-1}(\bar{I})$.

## 2 The Space $W_{0}^{1, p}(I)$

Definition: For $1 \leq p<+\infty$, we define $W_{0}^{1, p}(I)$ to be the closure of $C_{0}^{1}(I)$ with respect to the norm of $W^{1, p}(I)$. We denote by $H_{0}^{1}(I)=W_{0}^{1,2}(I)$.
Properties:

1) It is clear that $W_{0}^{1, p}(I)$ is a Banach space if equipped with the norm of $W^{1, p}(I)$.
2) $H_{0}^{1}(I)$ is a Hilbert space with respect to the inner product

$$
<u, v>=\int_{I}\left(u v+o u^{\prime} v^{\prime}\right)(x) d x
$$

3) $W_{0}^{1, p}(I)$ is separable for $1 \leq p<\infty$ and reflexive for $1<p<+\infty$.
4) $W_{0}^{1, p}(\mathbb{R})=W^{1, p}(\mathbb{R})$ since $C_{0}^{1}(\mathbb{R})$ is dense in $L^{p}(\mathbb{R}), \quad 1 \leq p<\infty$.

Remark: $C_{0}^{1}(I)$ (or $C_{0}^{\infty}(I)$ ) is not dense in $L^{\infty}(I)$; otherwise all $L^{\infty}$ functions are continuous.
Theorem: Suppose that $u \in W^{1, p}(I)$. Then $u \in W_{0}^{1, p}(I)$ if and only if $u=0$ on $\partial I$ (boundary of $I$ ).
Proof: 1) Given $u$ in $W_{0}^{1, p}(I)$, so $u$ is in $C(\bar{I})$. We know there exists a sequence ( $u_{n}$ )
in $C_{0}^{1}(I)$ such that $u_{n} \rightarrow u$ in $W^{1, p}(I)$, hence in $L^{\infty}$ norm. So $\forall \varepsilon>0$, there exists $n \in \mathbb{N}$ such that

$$
\left|u_{n}(x)-u(x)\right|<\varepsilon, \quad \forall x \in \bar{I}
$$

in particular for $x \in \partial I$. Thus we have $|u(x)|<\varepsilon$ since $u_{n}(x)=0, \quad x \in \partial I$. Since $\varepsilon$ is arbitrary then $u=0$ on $\partial I$.
2) Let $G$ be a $C^{1}$ function on $\mathbb{R}$ such that

$$
G(s)= \begin{cases}0, & |s| \leq 1 \\ s, & |s| \geq 2\end{cases}
$$

Given $u$ in $W^{1, p}(I)$, such that $u_{\mid \partial I}=0$, we define $u_{n}=G(n u) / n$. It is easy to verify that $\left|u_{n}\right| \leq|u|$ and $\left|u_{n}^{\prime}\right| \leq\left|u^{\prime}\right|$; hence $u_{n} \in W^{1, p}(I)$. Also supp $u_{n} \subset\{x \in I$ $/|u(x)| \geq 1 / n\}$, which is a compact set of $I$ since $\lim _{x \rightarrow \partial I} u(x)=0$. Thus $u_{n} \in$ $W^{1, p}(I) \cap C_{0}(I) \Longrightarrow u_{n} \in W_{0}^{1, p}(I)$.

Next, we prove that $u_{n} \rightarrow u$ in $W^{1, p}(I)$. For this we use the dominated convergence theorem.
a) First, note that

$$
\left|u_{n}-u\right| \leq 2|u| \quad\left|u_{n}^{\prime}-u^{\prime}\right| \leq(k+1)\left|u^{\prime}\right| .
$$

b) It is easy to verify that

$$
\left|u_{n}-u\right| \rightarrow 0, \quad\left|u_{n}^{\prime}-u^{\prime}\right| \rightarrow 0
$$

for almost every $x \in I$ and since $2|u| \in L^{p}$ and $(k+1)\left|u^{\prime}\right| \in L^{p}(I)$. Then

$$
\left|u_{n}-u\right| \rightarrow 0 \quad\left|u_{n}^{\prime}-u\right| \rightarrow 0 \text { in } L^{p}(I) ;
$$

hence $u_{n} \rightarrow u$ in $W^{1, p}(I)$. Since $u_{n} \in W_{0}^{1, p}(I)$, which is a closed subspace of $W^{1, p}(I)$, then $u \in W_{0}^{1, p}(I)$.
Theorem:

1) Let $1<p<\infty$ and $u \in L^{p}(I)$. Then $u \in W_{0}^{1, p}(I)$ if and only if there exists a constant $C$ such that

$$
\left|\int_{I} u \varphi^{\prime}\right| \leq C\|\varphi\|_{L^{p^{\prime}}(I)}, \quad \forall \in \varphi \in C_{0}^{1}(I), \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 .
$$

2) Let $1 \leq p<\infty$ and $u \in L^{p}(I)$. We define $u$ by

$$
\tilde{u}(x)=\left\{\begin{array}{lr}
u(x), & x \in I \\
0, & x \in \mathbb{R} \backslash I
\end{array}\right.
$$

Then $u \in W_{0}^{1, p}(I)$ if and only if $\tilde{u} \in W_{0}^{1, p}(\mathbb{R})$.
Proof: $u \in W_{0}^{1, p}(I) \Longrightarrow$

$$
\left|\int_{I} u \varphi^{\prime}\right|=\left|-\int_{I} u^{\prime} \varphi\right| \leq\left\|u^{\prime}\right\|_{L^{p}}\|\varphi\|_{L^{p^{\prime}}}, \quad \forall \varphi \in C_{0}^{1}(I)
$$

where $1 / p+1 / p^{\prime}=1$.
Define the linear form on $C_{0}^{1}(I)$ by $F(\varphi)=-\int_{i} u \varphi^{\prime}$.
It is clear that $\|F(\varphi)\| \leq C\|\varphi\|_{L^{p^{\prime}}} \Longrightarrow F$ is bounded on a subspace of $L^{p}(I)$. So it can be extended to $\Phi$ which is bounded by the same constant $C$ on $L^{p^{\prime}}(I)$. Riesz Representation Theorem implies the existence of $g \in L^{p}(I)$ such that

$$
\Phi(\varphi)=\int_{I} g \varphi^{\prime}, \quad \forall \varphi \in L^{p^{\prime}}(I)
$$

Thus (by definition) $g=u^{\prime} \Longrightarrow u \in W^{1, p}(I)$. To prove that $u \in W_{0}^{1, p}(I)$, we use the fact that

$$
F(\varphi)=-\int_{I} u \varphi^{\prime}=\int_{I} u^{\prime} \varphi, \quad \forall \varphi \in C^{1}(\bar{I}) \subset L^{p^{\prime}}(I)
$$

But

$$
-\int_{a}^{b} u^{\prime} \varphi=-u(b) \varphi(b)+u(a) \varphi(a)+\int_{a}^{b} u \varphi^{\prime}
$$

so

$$
-u(b) \varphi(b)+u(a) \varphi(a)=0, \quad \forall \varphi \in C^{1}(\bar{I})
$$

$\Longrightarrow u(a)=u(b)=0 \Longrightarrow u \in W_{0}^{1, p}(I)$.
Note that we needed $1<p<\infty$ for the reflexivity of $L^{p^{\prime}}(I)$ hence we could apply the Riesz representation theorem.
2) $u \in W^{1, p}(I) \Longrightarrow u \in L^{p}(\mathbb{R})$ since $\int_{\mathbb{R}}|\tilde{u}|^{p}=\int_{I}|u|^{p}$. Let $\varphi \in C_{0}^{1}(\mathbb{R})$. So

$$
\int_{\mathbb{R}} \tilde{u} \varphi^{\prime}=\int_{a}^{b} u \varphi^{\prime}=u(b) \varphi(b)-u(a) \varphi(a)-\int_{a}^{b} u^{\prime} \varphi=-\int_{a}^{b} u^{\prime} \varphi
$$

since $u(a)=u(b)=0$. Thus

$$
\int_{\mathbb{R}} \tilde{u} \varphi^{\prime}=-\int_{a}^{b} u^{\prime} \varphi=\int_{\mathbb{R}} \tilde{u}^{\prime} \varphi
$$

where

$$
\tilde{u}^{\prime}(x)=\left\{\begin{array}{lr}
u^{\prime}(x), \quad x \in I \\
0, & x \in \mathbb{R} \backslash I
\end{array}\right.
$$

and $\tilde{u} \in L^{p}(\mathbb{R})$.
To show that $u \in W^{1, p}(I)$, we take $\varphi \in C_{0}^{1}(I)$ and compute

$$
\int_{I} u \varphi^{\prime}=\int_{\mathbb{R}} \tilde{u} \tilde{\varphi}^{\prime}=-\int_{\mathbb{R}}^{\prime} \tilde{u} \tilde{\varphi}=-\int_{I} g \varphi
$$

where $\varphi$ is the extension of $\varphi$, which belongs to $C_{0}^{1}(\mathbb{R})$ since $\operatorname{supp} \varphi=\operatorname{supp} \varphi \subset \subset \mathbb{R}$.
Next, since $\tilde{u} \in W^{1, p}(\mathbb{R})$ so $\tilde{u}$ is continuous, hence $u(a)=\tilde{u}(a)=u(b)=\tilde{u}(b)=0$. Thus $u \in W_{0}^{1, p}(I)$.
Theorem: (Poincare's inequality). Suppose that $I$ is bounded. Then there exists a constant $C=C(I)>0$ such that

$$
\int_{I}|u|^{p} \leq C \int_{I}\left|u^{\prime}\right|^{p}, \quad \forall u \in W_{0}^{1, p}(I) .
$$

Proof: For $u \in W_{0}^{1, p}(I)$, we have

$$
u(x)=u(a)+\int_{a}^{x} u^{\prime}(t) d t=\int_{a}^{x} u^{\prime}(t) d t
$$

so

$$
\begin{aligned}
|u(x)|^{p} & \leq\left(\int_{a}^{x}\left|u^{\prime}(t)\right| d t\right)^{p} \leq\left[(x-a)^{1 / p^{\prime}}\left(\int_{a}^{b}\left|u^{\prime}(t)\right|^{p} d t\right)^{1 / p}\right]^{p} \\
& \leq(x-a)^{p / p^{\prime}}\left\|u^{\prime}\right\|_{p}^{p}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
\end{aligned}
$$

Integrate over $(a, b)$ to get

$$
\int|u(x)|^{p} \leq \frac{|I|^{p}}{p}\left\|u^{\prime}\right\|_{p}^{p}
$$

hence

$$
\|u\|_{p} \leq \frac{|I|}{(p)^{1 / p}}\left\|u^{\prime}\right\|_{p}
$$

Remark: 1) From the above inequality it is important that $I$ be bounded.
2) For $p=+\infty$, we have $C=|I|$, that is $\lim _{p \rightarrow \infty}(p)^{1 / p}=1$.
3) Looking carefully into the proof, we easily see that Poincare's inequality holds for $u \in W^{1, p}(I)$ with $u(c)=0, \quad a \leq c \leq b$
Corollary: The quantity $\left\|u^{\prime}\right\|_{L^{p}}$ define an equivalent norm on $W_{0}^{1, p}(I)$ and $<u, v>=$ $\int_{a}^{b} u^{\prime} v^{\prime}$ define an equivalent inner product on $H_{0}^{1}(I)$.

## 3 The Space $W_{0}^{m, p}(I)$

Definition: Let $1 \leq p<+\infty$, we define $W_{0}^{m, p}(I)$ to be the closure of $C_{0}^{m}(I)$ (or $\left.C_{0}^{\infty}(I)\right)$ with respect to the norm of $W^{m, p}(I)$. We denote by $H_{0}^{m}(I)=W_{0}^{m, 2}(I)$.
Remark: All the properties of $W_{0}^{1, p}(I)$ hold for $W_{0}^{m, p}(I)$.
Proposition: For $1 \leq p<\infty$,

$$
W_{0}^{1, p}(I)=\left\{u \in W^{m, p}(I) / u_{\mid \partial I}=u_{\mid \partial I}^{\prime}=\cdots=u_{\mid \partial I}^{(m-1)}=0\right\}
$$

Remark: There are 2 important spaces, namely

$$
W_{0}^{2, p}(I)=\left\{u \in W^{2, p}(I) / u_{\mid \partial I}=u_{\mid \partial I}^{\prime}=0\right\}
$$

and

$$
W^{2, p}(I) \cap W_{0}^{1, p}(I)=\left\{u \in W^{2, p}(I) / u_{\mid \partial I}=0\right\}
$$

Example: On $I=(0, \pi)$, let $u(x)=\sin x$. It is clear that $u \in W^{m, p}(I), \forall m \geq$ $2, p \geq 1$ and $u(0)=u(\pi)=0$; but $u^{\prime}(0) u^{\prime}(\pi) \neq 0$. So $u \notin W_{0}^{2, p}(I)$ however $u \in W^{2, p}(I) \cap W_{0}^{1, p}(I)$.
Exercise: Show that if $u \in W^{1, p}(I)$, for $I$ bounded, and $\int_{a}^{b} u(x) d x=0$ (zero mean) then Poincare's inequality holds.

