Sobolev Spaces for Higher Orders 1

Definition: Given an integer $m \geq 2$, we define the Sobolev space of order m by

$$W^{m,p}(I) = \{ u \in L^p(I) \ / \ u', u^{"}, ..., u^{(m)} \in L^p(I) \}$$

= $\{ u \in L^p(I) \ / \ u' \in W^{m-1,p}(I) \}$

The derivatives are in the weak sense. We then set $H^m(I) = W^{m,2}(I)$. **Properties:** 1) It is easy to verify that $u \in W^{1,p}(I)$ if and only if there exists m functions $g_1, g_2, \ldots, g_m \in L^p(I)$ such that

$$\int_{I} u\varphi^{(j)}(x)dx = (-1)^{j} \int_{I} g_{j}\varphi dx, \quad \forall \ \varphi \in C_{0}^{\infty}(I).$$

2) The space $W^{1,p}(I)$ equipped with the norm:

$$||u||_{m,p} = ||u||_p + \sum_{j=1}^m ||u^{(j)}||_p$$

is a Banach space.

3) The space $H^m(I)$ equipped with the inner product

$$< u, v >_{m,p} = \int_{I} (uv + u'v' + \dots + u^{(m)}v^{(m)})(x)dx$$

is a Hilbert space.

Theorem: $W^{m,p}(I)$ is separable for $1 \le p < \infty$ and reflexive for 1 .**Theorem:** $W^{m,p}(I)$ is continuously embedded in $C^{m-1}(\overline{I})$.

The Space $W_0^{1,p}(I)$ 2

Definition: For $1 \leq p < +\infty$, we define $W_0^{1,p}(I)$ to be the closure of $C_0^1(I)$ with respect to the norm of $W^{1,p}(I)$. We denote by $H_0^1(I) = W_0^{1,2}(I)$. **Properties**:

1) It is clear that $W_0^{1,p}(I)$ is a Banach space if equipped with the norm of $W^{1,p}(I)$.

2) $H_0^1(I)$ is a Hilbert space with respect to the inner product

$$\langle u, v \rangle = \int_{I} (uv + ou'v')(x)dx.$$

3) $W_0^{1,p}(I)$ is separable for $1 \le p < \infty$ and reflexive for 1 . $4) <math>W_0^{1,p}(\mathbb{R}) = W^{1,p}(\mathbb{R})$ since $C_0^1(\mathbb{R})$ is dense in $L^p(\mathbb{R})$, $1 \le p < \infty$. **Remark**: $C_0^1(I)$ (or $C_0^\infty(I)$) is not dense in $L^\infty(I)$; otherwise all L^∞ functions are continuous.

Theorem: Suppose that $u \in W^{1,p}(I)$. Then $u \in W^{1,p}_0(I)$ if and only if u = 0 on ∂I (boundary of I).

Proof: 1) Given u in $W_0^{1,p}(I)$, so u is in $C(\overline{I})$. We know there exists a sequence (u_n)

in $C_0^1(I)$ such that $u_n \to u$ in $W^{1,p}(I)$, hence in L^{∞} norm. So $\forall \varepsilon > 0$, there exists $n \in \mathbb{N}$ such that

$$|u_n(x) - u(x)| < \varepsilon, \quad \forall \ x \in \bar{I},$$

in particular for $x \in \partial I$. Thus we have $|u(x)| < \varepsilon$ since $u_n(x) = 0$, $x \in \partial I$. Since ε is arbitrary then u = 0 on ∂I .

2) Let G be a C^1 function on \mathbb{R} such that

$$G(s) = \begin{cases} 0, & |s| \le 1\\ s, & |s| \ge 2 \end{cases}$$

Given u in $W^{1,p}(I)$, such that $u_{|\partial I} = 0$, we define $u_n = G(nu)/n$. It is easy to verify that $|u_n| \leq |u|$ and $|u'_n| \leq |u'|$; hence $u_n \in W^{1,p}(I)$. Also supp $u_n \subset \{x \in I | |u(x)| \geq 1/n\}$, which is a compact set of I since $\lim_{x\to\partial I} u(x) = 0$. Thus $u_n \in W^{1,p}(I) \cap C_0(I) \Longrightarrow u_n \in W^{1,p}_0(I)$.

Next, we prove that $u_n \to u$ in $W^{1,p}(I)$. For this we use the dominated convergence theorem.

a) First, note that

$$|u_n - u| \le 2|u|$$
 $|u'_n - u'| \le (k+1)|u'|.$

b) It is easy to verify that

$$|u_n - u| \to 0, \qquad |u'_n - u'| \to 0$$

for almost every $x \in I$ and since $2|u| \in L^p$ and $(k+1)|u'| \in L^p(I)$. Then

 $|u_n - u| \to 0$ $|u'_n - u| \to 0$ in $L^p(I);$

hence $u_n \to u$ in $W^{1,p}(I)$. Since $u_n \in W_0^{1,p}(I)$, which is a closed subspace of $W^{1,p}(I)$, then $u \in W_0^{1,p}(I)$.

Theorem:

1) Let $1 and <math>u \in L^p(I)$. Then $u \in W_0^{1,p}(I)$ if and only if there exists a constant C such that

$$|\int_{I} u\varphi'| \le C \|\varphi\|_{L^{p'}(I)}, \quad \forall \ \in \varphi \in C_0^1(I), \quad \frac{1}{p} + \frac{1}{p'} = 1.$$

2) Let $1 \le p < \infty$ and $u \in L^p(I)$. We define u by

$$\tilde{u}(x) = \begin{cases} u(x), & x \in I \\ 0, & x \in \mathbb{R} \setminus I \end{cases}$$

Then $u \in W_0^{1,p}(I)$ if and only if $u \in W_0^{1,p}(\mathbb{R})$. **Proof**: $u \in W_0^{1,p}(I) \Longrightarrow$

$$\left|\int_{I} u\varphi'\right| = \left|-\int_{I} u'\varphi\right| \le \|u'\|_{L^{p}}\|\varphi\|_{L^{p'}}, \quad \forall \varphi \in C_{0}^{1}(I)$$

where 1/p + 1/p' = 1.

Define the linear form on $C_0^1(I)$ by $F(\varphi) = -\int_i u\varphi'$.

It is clear that $||F(\varphi)|| \leq C ||\varphi||_{L^{p'}} \Longrightarrow F$ is bounded on a subspace of $L^p(I)$. So it can be extended to Φ which is bounded by the same constant C on $L^{p'}(I)$. Riesz Representation Theorem implies the existence of $q \in L^p(I)$ such that

$$\Phi(\varphi) = \int_I g\varphi', \quad \forall \ \varphi \in L^{p'}(I).$$

Thus (by definition) $g = u' \Longrightarrow u \in W^{1,p}(I)$. To prove that $u \in W^{1,p}_0(I)$, we use the fact that

$$F(\varphi) = -\int_{I} u\varphi' = \int_{I} u'\varphi, \qquad \forall \varphi \in C^{1}(\bar{I}) \subset L^{p'}(I)$$

But

$$-\int_{a}^{b}u'\varphi = -u(b)\varphi(b) + u(a)\varphi(a) + \int_{a}^{b}u\varphi'$$

SO

$$-u(b)\varphi(b) + u(a)\varphi(a) = 0, \qquad \forall \varphi \in C^1(\bar{I})$$

 $\implies u(a) = u(b) = 0 \implies u \in W_0^{1,p}(I).$

Note that we needed $1 for the reflexivity of <math>L^{p'}(I)$ hence we could apply the Riesz representation theorem.

2) $u \in W^{1,p}(I) \Longrightarrow u \in L^p(\mathbb{R})$ since $\int_{\mathbb{R}} |\tilde{u}|^p = \int_I |u|^p$. Let $\varphi \in C_0^1(\mathbb{R})$. So

$$\int_{\mathbb{R}} \tilde{u} \varphi' = \int_{a}^{b} u\varphi' = u(b)\varphi(b) - u(a)\varphi(a) - \int_{a}^{b} u'\varphi = -\int_{a}^{b} u'\varphi$$

since u(a) = u(b) = 0. Thus

$$\int_{\mathbb{R}} \tilde{u} \varphi' = -\int_{a}^{b} u' \varphi = \int_{\mathbb{R}} \tilde{u'} \varphi$$

where

$$\tilde{u}'(x) = \begin{cases} u'(x), & x \in I \\ 0, & x \in \mathbb{R} \setminus I \end{cases}$$

and $u \in L^p(\mathbb{R})$.

To show that $u \in W^{1,p}(I)$, we take $\varphi \in C_0^1(I)$ and compute

$$\int_{I} u\varphi' = \int_{\mathbb{R}} \tilde{u\varphi'} = -\int_{\mathbb{R}} \tilde{u\varphi} = -\int_{I} g\varphi$$

where φ is the extension of φ , which belongs to $C_0^1(\mathbb{R})$ since $\operatorname{supp}\varphi = \operatorname{supp}\varphi \subset \subset \mathbb{R}$. Next, since $u \in W^{1,p}(\mathbb{R})$ so u is continuous, hence u(a) = u(a) = u(b) = u(b) = 0. Thus $u \in W_0^{1,p}(I)$.

Theorem: (Poincare's inequality). Suppose that I is bounded. Then there exists a constant C = C(I) > 0 such that

$$\int_{I} |u|^{p} \leq C \int_{I} |u'|^{p}, \quad \forall \ u \in W_{0}^{1,p}(I).$$

Proof: For $u \in W_0^{1,p}(I)$, we have

$$u(x) = u(a) + \int_{a}^{x} u'(t)dt = \int_{a}^{x} u'(t)dt$$

 \mathbf{SO}

$$\begin{aligned} |u(x)|^p &\leq \left(\int_a^x |u'(t)|dt\right)^p \leq \left[(x-a)^{1/p'} (\int_a^b |u'(t)|^p dt)^{1/p}\right]^p \\ &\leq (x-a)^{p/p'} ||u'||_p^p, \qquad \frac{1}{p} + \frac{1}{p'} = 1 \end{aligned}$$

Integrate over(a, b) to get

$$\int |u(x)|^{p} \leq \frac{|I|^{p}}{p} ||u'||_{p}^{p}$$

hence

$$||u||_{p} \leq \frac{|I|}{(p)^{1/p}} ||u'||_{p}$$

Remark: 1) From the above inequality it is important that I be bounded.

2) For $p = +\infty$, we have C = |I|, that is $\lim_{p\to\infty} (p)^{1/p} = 1$.

3) Looking carefully into the proof, we easily see that Poincare's inequality holds for $u \in W^{1,p}(I)$ with u(c) = 0, $a \le c \le b$

Corollary: The quantity $||u'||_{L^p}$ define an equivalent norm on $W_0^{1,p}(I)$ and $\langle u, v \rangle = \int_a^b u'v'$ define an equivalent inner product on $H_0^1(I)$.

3 The Space $W_0^{m,p}(I)$

Definition: Let $1 \leq p < +\infty$, we define $W_0^{m,p}(I)$ to be the closure of $C_0^m(I)$ (or $C_0^{\infty}(I)$) with respect to the norm of $W^{m,p}(I)$. We denote by $H_0^m(I) = W_0^{m,2}(I)$. **Remark**: All the properties of $W_0^{1,p}(I)$ hold for $W_0^{m,p}(I)$. **Proposition**: For $1 \leq p < \infty$,

$$W_0^{1,p}(I) = \{ u \in W^{m,p}(I) / u_{|\partial I} = u'_{|\partial I} = \dots = u_{|\partial I}^{(m-1)} = 0 \}$$

Remark: There are 2 important spaces, namely

$$W_{0}^{2,p}(I) = \{ u \in W^{2,p}(I) / u_{|\partial I} = u'_{|\partial I} = 0 \}$$

and

$$W^{2,p}(I) \cap W^{1,p}_0(I) = \{ u \in W^{2,p}(I) / u_{|\partial I} = 0 \}$$

Example: On $I = (0, \pi)$, let $u(x) = \sin x$. It is clear that $u \in W^{m,p}(I), \forall m \ge 2$, $p \ge 1$ and $u(0) = u(\pi) = 0$; but $u'(0)u'(\pi) \ne 0$. So $u \notin W_0^{2,p}(I)$ however $u \in W^{2,p}(I) \cap W_0^{1,p}(I)$.

Exercise: Show that if $u \in W^{1,p}(I)$, for I bounded, and $\int_a^b u(x)dx = 0$ (zero mean) then Poincare's inequality holds.