1 Embedding

Definition: Given two sets A and B. We say that A is embedded in B; $A \subset B$; if $\forall a \in A, a \in B$.

Theorem: (Embedding Theorem). There exists a constant C, depending on |I| such that

$$||u||_{L^{\infty}(I)} \leq C ||u||_{W^{1,p}(I)}, \quad \forall \ u \in W^{1,p}(I).$$

Proof: Without loss of generality, we take $I = \mathbb{R}$; otherwise we extend u on \mathbb{R} . So, let $G(s) |s|^{p-1}s, p \ge 1$ and w = G(v) for $v \in C_0^1(\mathbb{R})$. It is clear that $w \in C_0^1(\mathbb{R})$ and $w' = p|v|^{p-1}v'$. Thus

$$G(v(x)) = |v|^{p-1}v(x) = \int_{-\infty}^{x} p|v|^{p-1}v'(t)dt$$

 \implies

$$|v(x)|^{p} \le p||v||_{p}^{p-1}||v'||_{p} \le p||v||_{W^{1,p(\mathbf{R})}}^{p}, \qquad \forall x \in \mathbf{R}$$

Therefore

$$|v||_{\infty} \le (p)^{1/p} ||v||_{W^{1,p}(\mathbb{R})}.$$

 $u \in W^{1,p}(\mathbb{R})$, we approximate u by a sequence $(u_n) \subset C_0^{\infty}(\mathbb{R})$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R})$. We also have $||u_n||_{\infty} \leq C||u_n||_{W^{1,p}}$. By letting $n \to \infty$, we obtain the desired result.

Remark: If $I = (\mathbb{R})$, the embedding constant is $C = (p)^{1/p}$. If $I \neq (\mathbb{R})$, the embedding constant is C = C(|I|, p); this comes from the extension operator.

Definition: Given two metric spaces $X \subset Y$, We say that X is compactly embedded in Y if any bounded subset of X has a convergent sequence in Y.

Theorem: (The compact embedding theorem): Suppose that I is a bounded and open interval. Then

a) The embedding $W^{1,p}(I) \hookrightarrow C(\overline{I})$ is compact for $\rho > 1$.

b) The embedding $W^{1,1}(I) \hookrightarrow L^{s}(I)$ is compact for $s \in [1, +\infty)$.

Proof: a) Let *B* be the unit ball in $W^{1,p}(I)$, $B = \{u \in W^{1,p}(I) / ||u||_{W^{1,p}} \leq 1\}$. For any *x*, *y* in *I*, we have

$$\begin{aligned} |u(x) - u(y)| &= |\int_x^y u'(t)dt| \le ||u||_{W^{1,p}} |x - y|^{1/p'} \\ &\le |x - y|^{1/p'}, \qquad (\frac{1}{p} + \frac{1}{p'}), \quad p > 1. \end{aligned}$$

So B is equicontinuous. Also, the previous theorem we have $||u||_{\infty} \leq C||u||_{W^{1,p}}$. Therefore B is uniformly bounded. Arzela-Ascoli shows that B is relatively compact.

b) To show that $W^{1,1}(I)$ is compactly imbedded in $L^s(I)$, $s \ge 1$, we use a result of the L^p spaces. That is we show that $\|\tau_h u - u\|_{L^s(\omega)} \to 0$ uniformly in u as $h \to 0$, where $u \in B$ and $\omega \subset \subset I$.

$$\int_{\omega} |u(x+h) - u(x)|^s dx = \int_{\omega} |u(x+h) - u(x)|^{s-1} |u(x+h) - u(x)| dx$$

$$\leq 2||u||_{\infty}^{s-1} \int_{\omega} |u(x+h) - u(x)| dx$$

$$\leq 2C||u||_{W^{1,1}}^{s-1} \int_{\omega} \int_{x}^{x+h} |u'(t)| dt dx \leq 2C||u||_{W^{1,1}}^{s-1} ||u'||_{1}|h| \leq 2C|h|$$

We conclude then

$$\|\tau_h u - u\|_{L^s} \le C' |h|^{1/s} \to 0$$

uniformly in u as $h \to 0$; hence B is relatively compact in $L^{s}(I)$. **Remark**: The application of Ascoli's theorem requires that I be bounded. **Theorem**: If I is an interval (bounded or not). Then $W^{1,p}(I) \subset L^{q}(I), \forall q \in [p, \infty]$. **Proof**: q = p or $q = \infty$ is trivial. For $q \in (p, \infty)$, we have

$$\int_{I} |u|^q \leq ||u||_{\infty}^{q-p} \int_{I} |u|^p.$$

Remark: 1) If *I* bounded then $:q \in [1, \infty]$.

2) It is important that I is bounded in the compact embedding **Example**: Let

$$u_n(x) = \begin{cases} 0, & 0 \le x < n-1 \\ x - n + 1, & n-1 \le x < n \\ 1, & n \le x < n+1 \\ -x + n + 2, 1, & n+1 \le x \le n+2 \\ 0, & x > n+2 \end{cases}$$

be defined and continuous on $I = (0, +\infty)$. It is easy to verify that

$$\int |u_n|^p \le 3, \qquad \int |u'_n|^p = 2, \qquad \forall p \ge 1$$

hence $||u_n||_{W^{1,p}}$ is bounded. Also $\lim_{n\to\infty} u_n(x) = u(x) = 0$. This is a simple convergence; however, for any subsequence (u_{n_k}) we have

$$\sup_{0 < x < \infty} |u_{n_k}(x) - u(x)| = \sup_{0 < x < \infty} |u_{n_k}(x)| = 1$$

Thus

$$\lim_{k \to \infty} \sup_{0 < x < \infty} |u_{n_k}(x)| = 1 \neq 0.$$

Thus we cannot extract a subsequence, which converges to $u(x) \equiv 0$ in C(I) uniformly.

Also, note that

$$||u_{n_k} - u||_{L^s}^s = \int_0^\infty |u_{n_k}|^s \ge \int_{n_k}^{n_{k+1}} |u_{n_k}|^s = 1$$

 \implies

$$\lim_{k \to \infty} \|u_{n_k} - u\|_{L^s}^s \ge 1, \qquad \forall s \ge 1.$$

So the embedding of $W^{1,1}(I)$ in $L^s(I)$, $\forall s \ge 1$, is not compact. **Remark:** The embedding of $W^{1,1}(I)$ in C(I) is continuous but is not necessarily compact even if I is bounded. Example: For $n \ge 2$, let

$$u_n(x) = \begin{cases} 1 - nx, & 0 < x \le 1/n \\ 0, & 1/n < x < 1 \end{cases}$$

be defined on I = (0, 1). We have

$$\int_0^1 |u(x)| dx = \frac{1}{2n} < 1, \qquad \int_0^1 |u'(x)| dx = \int_0^{1/n} n dx = 1$$

But

$$\int_0^1 |u'(x)|^p dx = \int_0^{1/n} n^p dx = n^{p-1}$$

So (u_n) is bounded in $W^{1,1}(I)$ only. $\lim_{k\to\infty} u_{n_k}(x) = u(x) = 0$ for any subsequence but

$$\sup_{0 < x < 1} |u_{n_k}(x) - u(x)| = \sup_{0 < x < 1} |u_{n_k}(x)| = 1$$

Hence u_{n_k} cannot converge uniformly to u.

Corollary: Let $I = (a, \infty)$ and $u \in W^{1,p}(I), 1 \leq p < \infty$. Then $\lim_{x\to\infty} u(x) = 0$ **Proof**: $u \in W^{1,p}(I)$, so there exits $(u_n) \subset C_0^{\infty}(\mathbb{R})$ such that $u_{n|I} \to u$ in $L^{\infty}(I) \Longrightarrow$

 $|u(x) \le |u(x) - u_n(x)| + |u_n(x)| \le \varepsilon + |u_n(x)|$

for n large enough. So

$$\lim_{x \to \infty} |u(x) \le \varepsilon + \lim_{x \to \infty} |u_n(x)| = \varepsilon$$

Since ε is arbitrary then $\lim_{x\to\infty} |u(x)| = 0$.

Remark: 1) For $p = \infty$, the assertion of the corollary is not true. Take u(x) = 1 for example.

2) The $W^{1,p}(I)$ functions do not oscillate at infinity. They are of bounded variations.

Corollary: If u and v are in $W^{1,p}(I)$, $1 \le p \le +\infty$, then uv in $W^{1,p}(I)$ and

$$(uv)' = u'v + uv' \qquad (*)$$

Moreover, for all x, y in \overline{I} , we have

$$\int_{x}^{y} (u'v + uv')(t)dt = u(y)v(y) - u(x)v(x) \qquad .(**)$$

Proof: $u, v \in W^{1,p}(I) \implies u, v \in L^{\infty}(I) \implies uv \in L^p(I)$ since $\int_I |uv|^p dx \leq ||u||_{\infty}^p ||v||_{L^p}^p$.

Case 1. $1 \le p < \infty$.

Let (u_n) and (v_n) be two sequences in $C_0^{\infty}(\mathbb{R})$ such that

 $u_{n|I} \to u, v_{n|I} \to v$ in $W^{1,p}(I)$ (hence in $L^{\infty}(I)$). Therefore $u_n v_n \to uv$ in $L^{\infty}(I)$. We also have

$$(u_n v_n)' = u'_n v_n + u_n v'_n \to u'v + uv' \text{ in } L^p(I).$$

 $\implies (uv)' = u'v + uv' \in L^p(I)$; hence $uv \in W^{1,p}(I)$. By integrating over (x, y):

$$\int_{x}^{y} (u_n v_n)' = \int_{x}^{y} (u'_n v_n + u_n v'_n) = u_n(y) v_n(y) - u_n(x) v_n(x)$$

By letting $n \to \infty$, we obtain (**).

Case 2. $p = +\infty$

 $u, v \in W^{1,\infty}(I) \Longrightarrow uv, u'v + uv' \in L^{\infty}(I)$. We have to verify that $(uv)' = uv' + u'v \in L^{\infty}(I)$. Let $\varphi \in C_0^1(I)$; so for J bounded and supp $\varphi \subset J \subset \subset I$, we have u and $v \in L^q(J)$, $\forall q < \infty$ and consequently, by Case 1, we obtain

$$\int_{I} uv\varphi' = \int_{J} uv\varphi' = -\int_{J} (u'v + uv')\varphi = -\int_{I} (u'v + uv')\varphi$$

Thus

$$(uv)' = uv' + uv'$$
 in $L^{\infty}(I)$.

This completes the proof

Corollary: Let $G \in C^1(\mathbb{R})$, such that G(0) = 0 and $u \in W^{1,p}(I)$. Then $G \circ u \in W^{1,p}(I)$ and $(G \circ u)' = (G' \circ u)u'$.

Proof: Let $u \in W^{1,p}(I) \Longrightarrow$ there exists M > 0 such that $-M \le u(x) \le M$, $\forall x \in I$; $u \in C(\overline{I})$. G' is continuous and $G(0) = 0 \Longrightarrow |G(s)| \le C|s|$, $\forall s \in [-M, M] \Longrightarrow G \circ u \in L^p(I)$. Also $(G' \circ u)u' \in L^p(I)$, since $G' \circ u \in L^\infty$ and $u' \in L^p$.

Now we should verify that

$$\int_{I} (G \circ u) \varphi' = -\int (G' \circ u) u' \varphi, \qquad \forall \varphi \in C_0^1(I)$$

Case 1. $1 \le p < +\infty$.

There exists $(u_n) \in C_0^{\infty}(\mathbb{R})$ such that $u_{n|I} \to u$ in $W^{1,p}(I)$ (hence in $L^{\infty}(I)$). So $G \circ u_n \to G \circ u$ and $(G' \circ u_n)u'_n \to (G' \circ u)u'$ in $L^p(I)$ and

$$\int (G \circ u_n)\varphi' = -\int (G' \circ u_n)u'_n\varphi, \quad \forall \ \varphi \in C_0^\infty(I).$$

By taking n to ∞ , we obtain

$$\int_{I} (G \circ u) \varphi' = -\int (G' \circ u) u' \varphi, \quad \forall \ \varphi \in C_0^{\infty}(I).$$

Therefore $(G \circ u)' = (G' \circ u)u'$ by definition of weak derivative. Case 2. $p = \infty$

We repeat the same analysis of the previous corollary. **Remark**: The condition G(0) = 0 is not necessary when I is bounded.

Remark: $W^{1,p}(I)$ is called Banach algebra since $uv \in W^{1,p}(I)$ whenever u and v are in $W^{1,p}(I)$. This is not the case for $L^p(I)$ even for I bounded. **Example**: $u(x) = 1/\sqrt{x} \in L^1((0,1))$ since

$$\int_0^1 1/\sqrt{x} dx = 21/\sqrt{x}|_0^1 = 2.$$

 $u' \not\in L^1(0,1)$ since

$$\int_{0}^{1} u'(x) dx = u(x)r|_{0}^{1} = \infty$$

For v = u, we have uv = 1/x,

$$\int_0^1 (uv)dx = \log x|_0^1 = \infty \Longrightarrow uv \not\in L^1((0,1)).$$

Remark: When I is unbounded G(0) = 0 is essential **Example**: Let $I = (0, +\infty)$ and $u \in L^p(I)$, $\forall 1 \le p < \infty$. Take $G(s) = a \ne 0$; hence $G(0) \ne 0$. Note that $G \circ u = a \not\in L^p(I)$.