1 Embedding

Definition: Given two sets A and B. We say that A is embedded in B; A C B; if
Va€e A, a€B.
Theorem: (Embedding Theorem). There exists a constant C', depending on || such
that

[ull ooy < Cllullwingy, ¥ ue WH(I).

Proof: Without loss of generality, we take I = IR; otherwise we extend u on IR. So,
let G(s) |s|P™'s, p>1 and w = G(v) for v € C}(IR). Tt is clear that w € C3(IR) and
w' = p|v|P~1'. Thus

Glo(a)) = o o) = [ plop= v/ (s

(@) < pllollp~ 1], < pllvlfpm, V2 ER

Therefore
1
0]loo < ()7 ([0l wrom)-

u € WHP(IR),we approximate u by a sequence (u,) C C§°(IR) such that u, — u
in W'P(IR). We also have ||u,||eo < C|lun|lwre. By letting n — oo, we obtain the
desired result.

Remark: If I = (R), the embedding constant is C' = (p)?. If I # (IR), the
embedding constant is C' = C(|I|, p); this comes from the extension operator.
Definition: Given two metric spaces X C Y, We say that X is compactly embedded
in Y if any bounded subset of X has a convergent sequence in Y.

Theorem: (The compact embedding theorem): Suppose that I is a bounded and
open interval. Then

a) The embedding WP(I) < C(I) is compact for p > 1.

b) The embedding W' (I) < L*(I) is compact for s € [1,+00).
Proof: a) Let B be the unit ball in W'?(I), B = {u € W"(I)/||ul|w1» < 1}. For
any x,y in I, we have

Y ’
lu(z) —uly)| = |/ o' (t)dt] < Jfullwrelz —y['P
/ 1 1
S |x_y|1/17’ (7_‘_7/)7 p>1
p p

So B is equicontinuous. Also, the previous theorem we have ||u||s < C||u||yy1.». Therefore
B is uniformly bounded. Arzela-Ascoli shows that B is relatively compact.

b) To show that WHI(I) is compactly imbedded in L*(I), s> 1, we use a result
of the L spaces. That is we show that ||7,u — u||£s() — 0 uniformly in u as h — 0,
where v € B and w CC I..

/w|u(x—|—h)—u(x)|5dx - /w|u(m+h)—u(m)|s_1|u(x+h)—u(x)|dm
< 2Aulls? [ fule+h) = u(x)|ds
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s—1 oth /
20 fulliphs [ [ 1 (0)ldtda
2Cul[jyra [Tl ] < 2Ch]

N

We conclude then
s < C'AIYE =0

lThu — u|

uniformly in u as h — 0;.hence B is relatively compact in L*(1).

Remark: The application of Ascoli’ s theorem requires that I be bounded.
Theorem: If [ is an interval (bounded or not). Then W?(I) C L4(I), Vq € [p, o).
Proof: ¢ = p or ¢ = oo is trivial. For ¢ € (p, ), we have

[ tute < lulizz? [l
I 1

Remark: 1) If I bounded then :q € [1, c0].
2) It is important that I is bounded in the compact embedding
Example: Let

0, 0<xr<n-—1
r—n-+1, n—1<z<n
up(z) =4 1, n<r<n+l )

—x+n+21, n+l1<z<n+2
0, x>n+42

be defined and continuous on I = (0, +00). It is easy to verify that

JlulP <3, [lul=2 w=1

hence ||uy,|lwrr is bounded. Also lim,, ., u,(x) = u(x) = 0. This is a simple conver-
gence; however, for any subsequence (u,, ) we have

sup [up, (2) —u(z)| = sup |uy, (2)| =1
0<z<oo 0<z<oo

Thus

lim sup |up, (z)|=1%#0.

k=00 0<z<oo
Thus we cannot extract a subsequence, which converges to u(z) = 0 in C(I) uni-
formly.

Also, note that

[tny, =]

s o s Nk4+1 s
b= [l [ =1
0 Nk

Te 2> 1 Vs > 1.

Tm s, —
So the embedding of W1(I) in L*(I), Vs > 1, is not compact.
Remark: The embedding of W(I) in C(I) is continuous but is not necessarily
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compact even if I is bounded.
Example: For n > 2, let

() = 1—nz, 0<z<1/n
0, I/n<z<l

be defined on I = (0,1). We have

1 1 1 1/n
/ lu(z)|de = — < 1, / v/ (z)|dz = / ndr =1
0 2n 0 0
But
1 1/n
/ |u/(z)|Pdz = / nPdr = nP~"
0 0

So (uy) is bounded in WH(I) only. limy_o tn, (z) = u(z) = 0 for any subsequence
but

sup |up, (z) —u(z)| = sup [uy, (z)] =1
0<z<1 O<z<1

Hence u,,, cannot converge uniformly to u.
Corollary: Let I = (a,00) and u € W'?(I), 1 < p < oo. Then lim, o, u(z) = 0
Proof: u € W'?(I), so there exits (u,) C C§°(IR) such that u,; — u in L®(]) =

() < Ju(z) — un ()] + |un(z)] < & + [un(z)|
for n large enough. So

T Ju(a) < =+ Jim ()| = <
Since € is arbitrary then lim, . |u(z) = 0.
Remark: 1) For p = oo, the assertion of the corollary is not true. Take u(z) =1 for
example.

2) The WHP(I) functions do not oscillate at infinity. They are of bounded varia-
tions.
Corollary: If u and v are in W'P(I), 1 <p < 400, then uv in W'P(I) and

(uwv) = v'v + u’ (%)

Moreover, for all 2,y in I, we have

/xy(u’y + wo")(t)dt = u(y)v(y) — u(z)v(x) (%)

Proof: u,v € W'?(I) = w,v € L*(I) = w € LP(I) since [;|uvfPdz <
[
Case 1. 1 <p < o0.
Let (u,) and (v,) be two sequences in C3°(IR) such that
Up|r — U, Upy — v in WP(I) (hence in L*°(I)). Therefore u,v,, — uwv in L>(I).
We also have
(Unvn) = Ul v, + upv!, — u'v +uv” in LP(I).
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= (w) = v'v+uv’ € LP(I); hence uv € W'P(I). By integrating over (z,y):

/xy(unvn)’ - /:(u/nvn + upv)) = up(Y)vn(y) — un(2)v, ().

By letting n — oo, we obtain ().
Case 2. p=+00

u,v € Wh*(I) = wv, u'v + w' € L>®(I). We have to verify that (uv) =
w’ +u'v € L®(I). Let ¢ € C3(I); so for J bounded and supp ¢ C J CC I, we have
wand v € LI(J), Vg < oo and consequently, by Case 1, we obtain

/uvgp’ = / uvy' = —/(u'v +uw ) = —/(u’v + uv’)p
I J J I

Thus
(w) =w' +w’  in  L™(I).

This completes the proof
Corollary: Let G € C*(IR), such that G(0) = 0 and v € WP(I). Then Gou €
WhP(I) and (G ou) = (G ou)u'.
Proof: Let u € W'?(I) = there exists M > 0 such that —M < wu(z) < M, Vzé€
I;u € C(I). G'is continuous and G(0) =0 = |G(s)| < Cls|, Vse[-M, M| =
Gou € LP(I). Also (G'ou)u' € LP(I), since G'ou € L*>® and v’ € LP.

Now we should verify that

J(Gowy' == [(@ouplp,  ¥oe i)

Case 1. 1 <p < +o0.
There exists (u,) € C5°(IR) such that w,; — w in WHP(I) (hence in L*®(1)). So
Gou, — Gouand (G’ ou,)u,, — (G ou)u’ in LP(I) and

/(Go Up)p = —/(G' oup)uLp, Vo€ CE(I).

By taking n to co, we obtain
J(Gouy == [(Eoupe, VipeCE),

Therefore (G ou)’ = (G’ o w)u' by definition of weak derivative.
Case 2. p=0
We repeat the same analysis of the previous corollary.
Remark: The condition G(0) = 0 is not necessary when [/ is bounded.
Remark: W'P(I) is called Banach algebra since uv € WP (I) whenever u and v are
in W2(I). This is not the case for L?(I) even for I bounded.
Example: u(z) = 1/y/z € L'((0,1)) since

/01 1/Vadr = 21/} = 2.
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o' £LY0,1) since

For v = u, we have uwv = 1/z,
1
/ (uv)dz = log x|y = co = uwv EL'((0,1)).
0
Remark: When I is unbounded G(0) = 0 is essential

Example: Let I = (0,+00) and u € LP(I), V1 < p < oco. Take G(s) = a # 0;
hence G(0) # 0. Note that Gou =a ELP(I).



