## 1 Embedding

Definition: Given two sets $A$ and $B$. We say that $A$ is embedded in $B ; A \subset B$; if $\forall a \in A, a \in B$.
Theorem: (Embedding Theorem). There exists a constant $C$, depending on $|I|$ such that

$$
\|u\|_{L^{\infty}(I)} \leq C\|u\|_{W^{1, p}(I)}, \quad \forall u \in W^{1, p}(I) .
$$

Proof: Without loss of generality, we take $I=\mathbb{R}$; otherwise we extend $u$ on $\mathbb{R}$. So, let $G(s)|s|^{p-1} s, p \geq 1$ and $w=G(v)$ for $v \in C_{0}^{1}(\mathbb{R})$. It is clear that $w \in C_{0}^{1}(\mathbb{R})$ and $w^{\prime}=p|v|^{p-1} v^{\prime}$. Thus

$$
G(v(x))=|v|^{p-1} v(x)=\int_{-\infty}^{x} p|v|^{p-1} v^{\prime}(t) d t
$$

$\Longrightarrow$

$$
|v(x)|^{p} \leq p\|v\|_{p}^{p-1}\left\|v^{\prime}\right\|_{p} \leq p\|v\|_{W^{1, p(\mathbf{R})}}^{p}, \quad \forall x \in \mathbb{R}
$$

Therefore

$$
\|v\|_{\infty} \leq(p)^{1 / p}\|v\|_{W^{1, p}(\mathbb{R})}
$$

$u \in W^{1, p}(\mathbb{R})$, we approximate $u$ by a sequence $\left(u_{n}\right) \subset C_{0}^{\infty}(\mathbb{R})$ such that $u_{n} \rightarrow u$ in $W^{1, p}(\mathbb{R})$. We also have $\left\|u_{n}\right\|_{\infty} \leq C\left\|u_{n}\right\|_{W^{1, p}}$. By letting $n \rightarrow \infty$, we obtain the desired result.
Remark: If $I=(\mathbb{R})$, the embedding constant is $C=(p)^{1 / p}$. If $I \neq(\mathbb{R})$, the embedding constant is $C=C(|I|, p)$; this comes from the extension operator.
Definition: Given two metric spaces $X \subset Y$, We say that $X$ is compactly embedded in $Y$ if any bounded subset of $X$ has a convergent sequence in $Y$.
Theorem: (The compact embedding theorem): Suppose that $I$ is a bounded and open interval. Then
a) The embedding $W^{1, p}(I) \hookrightarrow C(\bar{I})$ is compact for $\rho>1$.
b) The embedding $W^{1,1}(I) \hookrightarrow L^{s}(I)$ is compact for $s \in[1,+\infty)$.

Proof: a) Let $B$ be the unit ball in $W^{1, p}(I), B=\left\{u \in W^{1, p}(I) /\|u\|_{W^{1, p}} \leq 1\right\}$. For any $x, y$ in $I$, we have

$$
\begin{aligned}
|u(x)-u(y)| & =\left|\int_{x}^{y} u^{\prime}(t) d t\right| \leq\|u\|_{W^{1, p}}|x-y|^{1 / p^{\prime}} \\
& \leq|x-y|^{1 / p^{\prime}}, \quad\left(\frac{1}{p}+\frac{1}{p^{\prime}}\right), \quad p>1
\end{aligned}
$$

So $B$ is equicontinuous. Also, the previous theorem we have $\|u\|_{\infty} \leq C\|u\|_{W^{1, p}}$. Therefore $B$ is uniformly bounded. Arzela-Ascoli shows that $B$ is relatively compact.
b) To show that $W^{1,1}(I)$ is compactly imbedded in $L^{s}(I), \quad s \geq 1$, we use a result of the $L^{p}$ spaces. That is we show that $\left\|\tau_{h} u-u\right\|_{L^{s}(\omega)} \rightarrow 0$ uniformly in $u$ as $h \rightarrow 0$, where $u \in B$ and $\omega \subset \subset I$..

$$
\begin{aligned}
\int_{\omega}|u(x+h)-u(x)|^{s} d x & =\int_{\omega}|u(x+h)-u(x)|^{s-1}|u(x+h)-u(x)| d x \\
& \leq 2\|u\|_{\infty}^{s-1} \int_{\omega}|u(x+h)-u(x)| d x
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2 C\|u\|_{W^{1,1}}^{s-1} \int_{\omega} \int_{x}^{x+h}\left|u^{\prime}(t)\right| d t d x \\
& \leq 2 C\|u\|_{W^{1,1}}^{s-1}\left|u^{\prime} \|_{1}\right| h|\leq 2 C| h \mid
\end{aligned}
$$

We conclude then

$$
\left\|\tau_{h} u-u\right\|_{L^{s}} \leq C^{\prime}|h|^{1 / s} \rightarrow 0
$$

uniformly in $u$ as $h \rightarrow 0$; .hence $B$ is relatively compact in $L^{s}(I)$.
Remark: The application of Ascoli's theorem requires that $I$ be bounded.
Theorem: If $I$ is an interval (bounded or not). Then $W^{1, p}(I) \subset L^{q}(I), \forall q \in[p, \infty]$.
Proof: $q=p$ or $q=\infty$ is trivial. For $q \in(p, \infty)$, we have

$$
\int_{I}|u|^{q} \leq\|u\|_{\infty}^{q-p} \int_{I}|u|^{p}
$$

Remark: 1) If $I$ bounded then $: q \in[1, \infty]$.
2) It is important that $I$ is bounded in the compact embedding

Example: Let

$$
u_{n}(x)=\left\{\begin{array}{l}
0, \quad 0 \leq x<n-1 \\
x-n+1, \quad n-1 \leq x<n \\
1, \quad n \leq x<n+1 \\
-x+n+2,1, \quad n+1 \leq x \leq n+2 \\
0, \quad x>n+2
\end{array} .\right.
$$

be defined and continuous on $I=(0,+\infty)$. It is easy to verify that

$$
\int\left|u_{n}\right|^{p} \leq 3, \quad \int\left|u_{n}^{\prime}\right|^{p}=2, \quad \forall p \geq 1
$$

hence $\left\|u_{n}\right\|_{W^{1, p}}$ is bounded. Also $\lim _{n \rightarrow \infty} u_{n}(x)=u(x)=0$. This is a simple convergence; however, for any subsequence ( $u_{n_{k}}$ ) we have

$$
\sup _{0<x<\infty}\left|u_{n_{k}}(x)-u(x)\right|=\sup _{0<x<\infty}\left|u_{n_{k}}(x)\right|=1
$$

Thus

$$
\lim _{k \rightarrow \infty} \sup _{0<x<\infty}\left|u_{n_{k}}(x)\right|=1 \neq 0
$$

Thus we cannot extract a subsequence, which converges to $u(x) \equiv 0$ in $C(I)$ uniformly.

Also, note that

$$
\begin{gathered}
\left\|u_{n_{k}}-u\right\|_{L^{s}}^{s}=\int_{0}^{\infty}\left|u_{n_{k}}\right|^{s} \geq \int_{n_{k}}^{n_{k+1}}\left|u_{n_{k}}\right|^{s}=1 \\
\lim _{k \rightarrow \infty}\left\|u_{n_{k}}-u\right\|_{L^{s}}^{s} \geq 1, \quad \forall s \geq 1
\end{gathered}
$$

So the embedding of $W^{1,1}(I)$ in $L^{s}(I), \forall s \geq 1$, is not compact.
Remark: The embedding of $W^{1,1}(I)$ in $C(I)$ is continuous but is not necessarily
compact even if $I$ is bounded.
Example: For $n \geq 2$, let

$$
u_{n}(x)= \begin{cases}1-n x, & 0<x \leq 1 / n \\ 0, & 1 / n<x<1\end{cases}
$$

be defined on $I=(0,1)$. We have

$$
\int_{0}^{1}|u(x)| d x=\frac{1}{2 n}<1, \quad \int_{0}^{1}\left|u^{\prime}(x)\right| d x=\int_{0}^{1 / n} n d x=1
$$

But

$$
\int_{0}^{1}\left|u^{\prime}(x)\right|^{p} d x=\int_{0}^{1 / n} n^{p} d x=n^{p-1}
$$

So $\left(u_{n}\right)$ is bounded in $W^{1,1}(I)$ only. $\lim _{k \rightarrow \infty} u_{n_{k}}(x)=u(x)=0$ for any subsequence but

$$
\sup _{0<x<1}\left|u_{n_{k}}(x)-u(x)\right|=\sup _{0<x<1}\left|u_{n_{k}}(x)\right|=1
$$

Hence $u_{n_{k}}$ cannot converge uniformly to $u$.
Corollary: Let $I=(a, \infty)$ and $u \in W^{1, p}(I), 1 \leq p<\infty$. Then $\lim _{x \rightarrow \infty} u(x)=0$
Proof: $u \in W^{1, p}(I)$, so there exits $\left(u_{n}\right) \subset C_{0}^{\infty}(\mathbb{R})$ such that $u_{n \mid I} \rightarrow u$ in $L^{\infty}(I) \Longrightarrow$

$$
\left|u(x) \leq\left|u(x)-u_{n}(x)\right|+\left|u_{n}(x)\right| \leq \varepsilon+\left|u_{n}(x)\right|\right.
$$

for $n$ large enough. So

$$
\lim _{x \rightarrow \infty}\left|u(x) \leq \varepsilon+\lim _{x \rightarrow \infty}\right| u_{n}(x) \mid=\varepsilon
$$

Since $\varepsilon$ is arbitrary then $\lim _{x \rightarrow \infty} \mid u(x)=0$.
Remark: 1) For $p=\infty$, the assertion of the corollary is not true. Take $u(x)=1$ for example.
2) The $W^{1, p}(I)$ functions do not oscillate at infinity. They are of bounded variations.
Corollary: If $u$ and $v$ are in $W^{1, p}(I), \quad 1 \leq p \leq+\infty$, then $u v$ in $W^{1, p}(I)$ and

$$
\begin{equation*}
(u v)^{\prime}=u^{\prime} v+u v^{\prime} \tag{*}
\end{equation*}
$$

Moreover, for all $x, y$ in $\bar{I}$, we have

$$
\int_{x}^{y}\left(u^{\prime} v+u v^{\prime}\right)(t) d t=u(y) v(y)-u(x) v(x) \quad .(* *)
$$

Proof: $u, v \in W^{1, p}(I) \Longrightarrow u, v \in L^{\infty}(I) \Longrightarrow u v \in L^{p}(I)$ since $\int_{I}|u v|^{p} d x \leq$ $\|u\|_{\infty}^{p}\|v\|_{L^{p}}^{p}$.
Case 1. $1 \leq p<\infty$.
Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be two sequences in $C_{0}^{\infty}(\mathbb{R})$ such that
$u_{n \mid I} \rightarrow u, v_{n \mid I} \rightarrow v$ in $W^{1, p}(I)$ (hence in $L^{\infty}(I)$ ). Therefore $u_{n} v_{n} \rightarrow u v$ in $L^{\infty}(I)$.
We also have

$$
\left(u_{n} v_{n}\right)^{\prime}=u_{n}^{\prime} v_{n}+u_{n} v_{n}^{\prime} \rightarrow u^{\prime} v+u v^{\prime} \text { in } L^{p}(I) .
$$

$\Longrightarrow(u v)^{\prime}=u^{\prime} v+u v^{\prime} \in L^{p}(I) ;$ hence $u v \in W^{1, p}(I)$. By integrating over $(x, y)$ :

$$
\int_{x}^{y}\left(u_{n} v_{n}\right)^{\prime}=\int_{x}^{y}\left(u_{n}^{\prime} v_{n}+u_{n} v_{n}^{\prime}\right)=u_{n}(y) v_{n}(y)-u_{n}(x) v_{n}(x) .
$$

By letting $n \rightarrow \infty$, we obtain ( $* *$ ).
Case 2. $p=+\infty$
$u, v \in W^{1, \infty}(I) \Longrightarrow u v, u^{\prime} v+u v^{\prime} \in L^{\infty}(I)$. We have to verify that $(u v)^{\prime}=$ $u v^{\prime}+u^{\prime} v \in L^{\infty}(I)$. Let $\varphi \in C_{0}^{1}(I)$; so for $J$ bounded and $\operatorname{supp} \varphi \subset J \subset \subset I$, we have $u$ and $v \in L^{q}(J), \quad \forall q<\infty$ and consequently, by Case 1, we obtain

$$
\int_{I} u v \varphi^{\prime}=\int_{J} u v \varphi^{\prime}=-\int_{J}\left(u^{\prime} v+u v^{\prime}\right) \varphi=-\int_{I}\left(u^{\prime} v+u v^{\prime}\right) \varphi
$$

Thus

$$
(u v)^{\prime}=u v^{\prime}+u v^{\prime} \quad \text { in } \quad L^{\infty}(I) .
$$

This completes the proof
Corollary: Let $G \in C^{1}(\mathbb{R})$, such that $G(0)=0$ and $u \in W^{1, p}(I)$. Then $G \circ u \in$ $W^{1, p}(I)$ and $(G \circ u)^{\prime}=\left(G^{\prime} \circ u\right) u^{\prime}$.
Proof: Let $u \in W^{1, p}(I) \Longrightarrow$ there exists $M>0$ such that $-M \leq u(x) \leq M, \quad \forall x \in$ $I ; u \in C(\bar{I}) . G^{\prime}$ is continuous and $G(0)=0 \Longrightarrow|G(s)| \leq C|s|, \quad \forall s \in[-M, M] \Longrightarrow$ $G \circ u \in L^{p}(I)$. Also $\left(G^{\prime} \circ u\right) u^{\prime} \in L^{p}(I)$, since $G^{\prime} \circ u \in L^{\infty}$ and $u^{\prime} \in L^{p}$.

Now we should verify that

$$
\int_{I}(G \circ u) \varphi^{\prime}=-\int\left(G^{\prime} \circ u\right) u^{\prime} \varphi, \quad \forall \varphi \in C_{0}^{1}(I)
$$

Case 1. $1 \leq p<+\infty$.
There exists $\left(u_{n}\right) \in C_{0}^{\infty}(\mathbb{R})$ such that $u_{n \mid I} \rightarrow u$ in $W^{1, p}(I)$ (hence in $L^{\infty}(I)$ ). So $G \circ u_{n} \rightarrow G \circ u$ and $\left(G^{\prime} \circ u_{n}\right) u_{n}^{\prime} \rightarrow\left(G^{\prime} \circ u\right) u^{\prime}$ in $L^{p}(I)$ and

$$
\int\left(G \circ u_{n}\right) \varphi^{\prime}=-\int\left(G^{\prime} \circ u_{n}\right) u_{n}^{\prime} \varphi, \quad \forall \varphi \in C_{0}^{\infty}(I)
$$

By taking $n$ to $\infty$, we obtain

$$
\int_{I}(G \circ u) \varphi^{\prime}=-\int\left(G^{\prime} \circ u\right) u^{\prime} \varphi, \quad \forall \varphi \in C_{0}^{\infty}(I) .
$$

Therefore $(G \circ u)^{\prime}=\left(G^{\prime} \circ u\right) u^{\prime}$ by definition of weak derivative.
Case 2. $p=\infty$
We repeat the same analysis of the previous corollary.
Remark: The condition $G(0)=0$ is not necessary when $I$ is bounded.
Remark: $W^{1, p}(I)$ is called Banach algebra since $u v \in W^{1, p}(I)$ whenever $u$ and $v$ are in $W^{1, p}(I)$. This is not the case for $L^{p}(I)$ even for $I$ bounded.
Example: $u(x)=1 / \sqrt{x} \in L^{1}((0,1))$ since

$$
\int_{0}^{1} 1 / \sqrt{x} d x=21 /\left.\sqrt{x}\right|_{0} ^{1}=2
$$

$u^{\prime} \notin L^{1}(0,1)$ since

$$
\int_{0}^{1} u^{\prime}(x) d x=\left.u(x) r\right|_{0} ^{1}=\infty
$$

For $v=u$, we have $u v=1 / x$,

$$
\int_{0}^{1}(u v) d x=\left.\log x\right|_{0} ^{1}=\infty \Longrightarrow u v \notin L^{1}((0,1))
$$

Remark: When I is unbounded $G(0)=0$ is essential
Example: Let $I=(0,+\infty)$ and $u \in L^{p}(I), \quad \forall 1 \leq p<\infty$. Take $G(s)=a \neq 0$; hence $G(0) \neq 0$. Note that $G \circ u=a \notin L^{p}(I)$.

