1 Extension and Density

Definition: Given a function $f: I \to \mathbb{R}$ and J an interval such that $I \subset J$. We say that \tilde{f} is an extension of f on J if $\tilde{f}(x) = f(x)$, $\forall x \in I$.

Theorem: (Extension Operator): Given $1 \leq p \leq \infty$. There exists an operator $P: W^{1,p} \to W^{1,p}(\mathbb{R})$ such that

- (i) $P_{u_{|_I}} = u$, $\forall u \in W^{1,p}(I)$
- (ii) $\|P_u\|_p \le C\|u\|_{1,p}$, $\forall u \in W^{1,p}(I)$,
- (iii) $||P_u||_{1,p} \le C' ||u||_{1,p}, \quad \forall \ u \in W^{1,p}(I).$

Proof: Suppose that I = (a, b) bounded. We can take I = (0, 1) by a change of variable t = a + s(b - a) Let η be a $C^1(\mathbb{R})$ function such that

$$\eta(x) = \begin{cases} 1, & x < 1/4 \\ 0, & x > 3/4 \end{cases}$$

We extend u to $(0, \infty)$ by $\eta \tilde{u}$ where

$$\tilde{u}(x) = \begin{cases} u(x), & x \in I \\ 0, & x \ge 1. \end{cases}$$

Let us show that $\eta \tilde{u} \in W^{1,p}((0,+\infty))$

$$\int_0^{+\infty} |\eta \tilde{u}|^p = \int_0^1 |\eta u|^p \le \int_0^1 |u|^p \Rightarrow ||\eta \tilde{u}||_{L^p(\mathbb{R})} \le ||u||_{L^p(\mathbb{R})}.$$

Let $\varphi \in C_0^{\infty}(\mathbb{R})$, then

$$\int_0^{+\infty} \eta \tilde{u} \varphi'(x) dx = \int_0^1 \eta u \varphi' dx$$

$$= \int_0^1 u [(\eta \varphi)' - \eta' \varphi] dx$$

$$= \int_0^1 u (\eta \varphi)' - \int_0^1 u \eta' \varphi$$

$$= -\int_0^1 u' \eta \varphi - \int u \eta' \varphi = -\int_0^1 (u' \eta + u \eta') \varphi.$$

since $\eta \varphi \in C_0^1(I)$. Thus

$$\int_0^{+\infty} \eta \tilde{u} \varphi' = -\int_0^{+\infty} (\tilde{u}' \eta + \tilde{u} \eta') \varphi$$

where

$$\tilde{u}' = \begin{cases} u' & \text{on } I \\ 0 & \text{on } [1, +\infty) \end{cases}$$

and it is easy to see that

$$\begin{aligned} \|\eta \tilde{u}' + \eta' \tilde{u}\|_{L^{p}(\mathbb{R}^{+})} &= \|\eta u' + \eta' u\|_{L^{p}(I)} \\ &\leq \|\eta u'\|_{L^{p}(I)} + \|\eta' u\|_{L^{p}(I)} \\ &\leq \|u'\|_{L^{p}(I)} + \|\eta'\|_{\infty} \|u\|_{L^{p}(I)} \end{aligned}$$

So

$$\|\eta \tilde{u}\|_{1,p} \le C \|u\|_{1,p}.$$

Now we are in the first case and hence $\eta \tilde{u}$ is extended to \mathbb{R} by reflexion. We denote by v_1 extension of ηu to \mathbb{R} .

Similarly, we do for $(1 - \eta)u$ and we denote by v_2 the extension of $(1 - \eta)u$ to \mathbb{R} .

$$v = v_1 + v_2;$$

so $v \in W^{1,p}(\mathbb{R})$ and $v(x) = u(x), \forall x \in I$. This completes the proof.

Remark: If $u \in W^{1,p}(I)$, I = (a,b) extending u by zero outside I, will not give in general \tilde{u} in $W^{1,p}(\mathbb{R})$.

Example: Let u(x) = x on (0,1). So

$$\tilde{u}(x) = \begin{cases} x, & x \in (0,1) \\ 0, & x \not\in (0,1) \end{cases}$$

Let $\varphi \in C_0^{\infty}(\mathbb{R})$ so

$$\int_{-\infty}^{\infty} \tilde{u}\varphi'(x)dx = \int_{0}^{1} x\varphi'(x)dx$$

$$= x\varphi(x)|_{0}^{1} - \int_{0}^{1} \varphi(x)dx$$

$$= \varphi(1) - \int_{0}^{1} \varphi(x)dx$$

$$= \delta_{1}\varphi - \int_{0}^{1} \varphi = \delta_{1}\varphi - \int_{-\infty}^{\infty} \tilde{u}'\varphi.$$

Hence $\tilde{u} \not\in W^{1,p}(\mathbb{R})$.

Remark: The extension operator is not unique. It depends heavily on the choice of η .

Definition: (Convolution). Let ρ be in $L^1(\mathbb{R})$ and g in $L^p(\mathbb{R})$. We define the convolution of ρ and g by

$$\rho * g(x) = \int_{-\infty}^{\infty} \rho(x - y)g(y)dy$$
, for almost every $x \in \mathbb{R}$

Jension Inequality. If $f \geq 0$ and $\int_{-\infty}^{\infty} f(x)dx = 1$ and $\phi \geq 0$ continuous and convex, then

$$\phi\left(\int fg\right) \le \int f\phi(g),$$

Properties:

- 1) $\rho * g = g * \rho$.
- 2) If $\rho \in L^1$ and $g \in L^p$, then $\rho * g$ is in $L^p(\mathbb{R})$. Moreover

$$\|\rho * g\|_{L^p} \le \|\rho\|_{L^1} \cdot \|g\|_{L^p}.$$

3) If $\rho \in L^1(\mathbb{R}), g \in C^0(\mathbb{R})$, then $\rho * g \in L^{\infty}(\mathbb{R})$ Moreover we have

$$\tau_h(\rho * g) - \rho * g = \rho * (\tau_h g - g)$$

and

$$\|\rho * (\tau_n g - g)\|_{L^{\infty}} \le \|\rho\|_{L^1} \|\tau_h g - g\|_{L^{\infty}}.$$

Hence

$$\|\rho * (\tau_h q - q)\|_{L^{\infty}} \to 0 \text{ as } h \to 0.$$

4) If $f \in L^1(\mathbb{R})$ and $\varphi \in C_0^1(\mathbb{R})$ or $C_0^{\infty}(\mathbb{R})$, then $f * \varphi \in C^1$ or C^{∞} with $(f * \varphi)' = f * \varphi'$.

5) If f and φ are of compact support, then $f * \varphi$ is of compact support too.

Proof: 1)

$$\int_{-\infty}^{\infty} \rho(x-y)g(y)dy = -\int_{\infty}^{-\infty} \rho(s)g(x-s)ds,$$

using the change of variables $s = x - y \Rightarrow dy = -ds$.

2) let

$$f = \frac{|\rho|}{\|\rho\|_{L^1}} \phi(r) = r^p, \quad p \ge 1$$

$$\int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} \frac{\rho(y)}{\|\rho\|_{L^1}} g(x - y) dy \right|^p dx \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|\rho(y)|}{\|\rho\|_{L^1}} |g(x - y)|^p dy dx$$

that is

$$\frac{1}{\|\rho\|_{L_1}^p} \|g * \rho\|_{L^1}^p \le \int_{-\infty}^{\infty} \frac{|\rho(y)|}{\|\rho\|_{L^1}} dy \int_{-\infty}^{\infty} |g(x-y)|^p dx = \|g\|_{L^p}^p$$

thus

$$||g * \rho||_{L^1} \le ||\rho||_{L_1} ||g||_{L^p}$$

3)

$$|\rho * g(x)| \le \int_{-\infty}^{\infty} \rho(x-y) |g(y)| dy = ||g||_{L^{\infty}} \cdot |\rho||_{L^{1}}$$

hence $\rho * g \in L^{\infty}$.

$$\begin{split} \tau_h(\rho*g)(x) - g*p(x) &= \int_{-\infty}^{\infty} \rho(y)g(x+h-y)dy - \int_R \rho(y)g(x-y)dy \\ &= \int_{-\infty}^{\infty} \rho(y)[g(x+h-y) - g(x-y)]dy \\ &= \int_{-\infty}^{\infty} \rho(y)[\tau_h g(x-y) - g(x-y)]dy \\ &= \rho*(\tau_h g - g)(x). \end{split}$$

It is also clear that

$$\|\rho * (\tau_h g - g)\|_{L^{\infty}} \le \|\rho\|_{L^1} \|\tau_h g - g\|_{L^{\infty}}$$

and hence g is continuous, then $\|\tau_h g - g\|_{L^{\infty}} \to 0$ as $h \to 0$.

4)

$$\frac{(f * \varphi)(x+h) - (f * \varphi)(x)}{h} - (f * \varphi')(x)$$

$$= \int_{-\infty}^{\infty} f(y) \left[\frac{\varphi(x+h-y) - \varphi(x-y)}{h} - \varphi'(x-y) \right] dy.$$

and since $\varphi \in C_0^1(\mathbb{R})$, then we take limit to get

$$\lim_{h \to \infty} \frac{(f * \varphi)(x+h) - (f * \varphi)(x)}{h} - (f * \varphi')(x) = 0$$

hence $(f * \varphi)'(x) = f * \varphi'(x)$.

Now, similarly if $\varphi \in C_0^2(\mathbb{R})$, then

$$(f * \varphi)'' = (f * \varphi')' = f * \varphi''$$

and we continue to find that

$$(f * \varphi)^{(m)} = f * \varphi^{(m)}, \quad \forall \ m = 1, 2, 3, \dots$$

5) If support $f \subset (-r, r)$ and support $\varphi \subset (R, R)$, then supp $f * \varphi \subset (-r - R, r + R)$. Let x > r + r, so

$$f * \varphi(x) = \int_{-r}^{r} f(y)\varphi(x - y)dy$$

If $x > r + R \Rightarrow x - y > r + R - r = R \Rightarrow \varphi(x - y) \Longrightarrow f * \varphi(x) = 0$.

Similarly, if x < -r - R, we have $f * \varphi(x) = 0$.

Lemma: Suppose that $\rho \in L^1(\mathbb{R})$ and $v \in W^{1,p}(\mathbb{R})$. then $(\rho * v)$ is in $W^{1,p}(\mathbb{R})$ with $(\rho * v)' = \rho * v'$.

Proof: First suppose that ρ is of compact support and let $\varphi \in C_0^1(\mathbb{R})$

$$\int_{-\infty}^{\infty} (\rho * v) \varphi'(x) = \int_{-k}^{k} \int_{-\infty}^{\infty} \rho(y) v(x - y) \varphi'(x) dy dx.$$

$$= \int_{-k}^{k} \int_{-\infty}^{\infty} v(y) \rho(x - y) \varphi'(x) dy dx$$

$$= \int (\int (\rho(x - y) \varphi'(x) dx) v(y) dy$$

$$= \int_{-\infty}^{\infty} (\check{\rho} * \varphi)'(y) v(y) dy = -\int v'(\check{\rho} * \varphi)(y) dy$$

$$= -\int v'(y) \int \rho(x - y) \varphi(x) dx dy = -\int (\int \rho(x - y) \varphi(x) v'(y) dx) dy$$

$$= -\int \varphi(x) \left(\int \rho(x - y) v'(y) dy\right) dx$$

$$= -\int (\rho * v')(x) \varphi(x) dx, \quad \forall \varphi \in C_0^1(\mathbb{R}).$$

Here $\check{\rho}(s) = \rho(-s)$. Moreover we have

$$\check{\rho}*\varphi\in C^1_0({\rm I\!R}) \text{ since } v\in W^{1,p}({\rm I\!R})$$

We conclude then

$$\rho * v \in W^{1,p}$$
 with $(\rho * v)' = \rho * v'$.

Now, for $\rho \in L^1(\mathbb{R})$ there exists a sequence $(\rho_n) \subset C_0^{\infty}(\mathbb{R})$ such that $\rho_n \to \rho$ in L^1 norm. $\rho_n * v$ is in $W^{1,p}(\mathbb{R})$ such that $(\rho_n * v)' = \rho_n * v'$.

$$\|\rho_n * v - \rho * v\|_{L^p} = \|(\rho_n - \rho) * v\|_{L^p} \le \|\rho_n - \rho\|_{L^1} \|v\|_{L^p}$$

so as $n \to \infty$, we get $\rho_n * v \to \rho * v$ in L^p . Similarly, we get

$$\rho_n * v' \to \rho * v' \text{ in } L^p$$
.

Therefore $\rho * v$ is in $W^{1,p}(\mathbb{R})$ with $(\rho * v)' = \rho * v'$.

Truncation. Let ξ be a $C_0^{\infty}(\mathbb{R})$ function with

$$\xi(x) = \begin{cases} 1, & |x| \le 1\\ 0, & |x| \ge 2 \end{cases}$$

We define

$$\xi_n(x) = \xi\left(\frac{x}{n}\right), \quad n = 1, 2, 3, \dots$$

Lemma: Let f be in $L^p(\mathbb{R}), 1 \leq p < \infty$, Then $\xi_n f \to f$ in L^p .

Proof: $|\xi_n f - f|^p \to 0$, almost everywhere on IR.

$$|\xi_n f - f|^p \le 2^{p-1} (|\xi_n f|^p + |f|^p) \le 2^p |f|^p \in L^1(\mathbb{R})$$

So by the dominated convergence theorem we get

$$\int_{-\infty}^{\infty} |\xi_n f - f|^p \to 0.$$

Modifiers: Let

$$\psi(x) = \begin{cases} \exp\left[-1/(x-1)^2\right], & -1 < x < 1 \\ 0, & |x| \ge 1 \end{cases}$$

It is easy to check that $\psi \in C_0^{\infty}(\mathbb{R})$. We define the molifiers or the regularizing sequences by

$$\psi_n(x) = \frac{n}{a}\psi(nx), \qquad a = \int_{-\infty}^{\infty} \psi(x)dx$$

Properties

- 1) $\int_{-\infty}^{\infty} \psi_n(x) dx = 1.$
- 2) $\psi_n \to \delta$ in $\mathcal{D}'(\mathbb{R})$ with $\operatorname{supp}\psi_n \subset (-1/n, 1/n)$, hence $\operatorname{supp}\psi_n \to \{0\}$.

Proof: 1) Direct integration

2) For $\varphi \in C_0^{\infty}(\mathbb{R})$, we have

$$\begin{split} |\int_{-\infty}^{\infty} \psi_n(x) \varphi(x) dx - \varphi(0)| &= |\int_{-\infty}^{\infty} \psi_n(x) \left[\varphi(x) - \varphi(0) \right] dx | \\ &= |\frac{1}{a} \int_{-\infty}^{\infty} \rho(y) \left[\varphi(\frac{y}{n}) - \varphi(0) \right] dy | \\ &\leq \frac{1}{a} \max_{[-1,1]} \left[\varphi(\frac{\zeta}{n}) - \varphi(0) \right] \int_{-\infty}^{\infty} \rho(y) dy \\ &\leq \frac{1}{a} \max_{[-1,1]} \left[\varphi(\frac{\zeta}{n}) - \varphi(0) \right] \to 0 \end{split}$$

as $n \to \infty$ since φ is uniformly continuous on [-1, 1]. Hence $\psi_n \to \delta$ in $\mathcal{D}'(\mathbb{R})$.

Theorem (Density): Let u be in $W^{1,p}(I)$, $1 \le p < \infty$, then there exitx a sequence $(u_n) \subset C_0^{\infty}(\mathbb{R})$, such that $u_{n|I} \to u$ in $W^{1,p}(I)$.

Proof: If $I \neq \mathbb{R}$ we then extend u to \mathbb{R} by Pu. So let us suppose that $I = \mathbb{R}$. We take $u_n = \xi_n(\rho_n * u)$

$$||u_{n} - u||_{p} = ||\xi_{n}(\rho_{n} * u) - u||_{p}$$

$$\leq ||\xi_{n}(\rho_{n} * u - u)||_{p} + ||\xi_{n}u - u||_{p}$$

$$\leq ||\xi_{n}||_{\infty}||\rho_{n} * u - u||_{p} + ||\xi_{n}u - u||_{p} \to 0$$

as $n \to \infty$ by the above lemma $u'_n = \xi'_n(\rho_n * u) + \xi_n(\rho_n * u')$, so

$$||u'_{n} - u'||_{p} \leq ||\xi'_{n}(\rho_{n} * u)||_{p} + ||\xi_{n}(\rho_{n} * u') - u'||_{p}$$

$$\leq \frac{C}{n}||u||_{p} + ||\xi_{n}(\rho_{n} * u') - u'||_{p} \to 0$$

as $n \to \infty$, by the same argument.