1 Extension and Density

Definition: Given a function f: I — IR and J an interval such that I C J. We say
that f is an extension of f on J if f(z) = f(z), Yz €l

Theorem: (Extension Operator): Given 1 < p < oo. There exists an operator
P WP — WP(IR) such that

(i) Pu, =u, Yue Whe(T),

(i) [|[Pullp < Cllullip, ¥V ue WD),

(iii) [[Pullip < C'llullp, Y ue W)

Proof: Suppose that I = (a,b) bounded. We can take I = (0,1) by a change of
variable t = a + s(b — a) Let n be a C'(IR) function such that

1, r<1/4
n(w) = { 0, x>3/4

Let us show that na € WH?((0, +00))
+o0 5 1 1 5
Ll = [l < [l = Il <l
Let ¢ € C3°(IR), then
—+o00 1
/ nug' (x)de = / nuy'dx
0 0
1
= /0 ul(ne) —n'pldx
! / ! /
= / u(ne) —/ ur'p
0 0
! / / ! / /
= —/0 uw—/unso:—/o (u'n +un)e.
since ne € C§(I). Thus

too ~ oo ~/ ~ 7
/0 nusoz—/o (a'n+an')e

Y u' on [
0 on [1,400)

where

and it is easy to see that
Ind’ +n'all oy = N’ +n'ull o)
< | llzecry + In'ull ey
< ' llzey + 110 llsollull oy
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So
Inillip < Cllullp.

Now we are in the first case and hence nu is extended to IR by reflexion. We denote

by vy extension of nu to IR.

Similarly, we do for (1 — n)u and we denote by v the extension of (1 —n)u to RR.
Let

V= V1 + Vg;

so v € WH(IR) and v(x) = u(z), V x € I. This completes the proof.

Remark: If u € W'?(I), I = (a,b) extending u by zero outside I, will not give in
general @ in WP(IR).

Example: Let u(z) =« on (0,1). So

/oo up'(x)de = /lega'(a:)da:
= we@lh- [ el
= ()~ [ pla)ds

0
1 o]
==&w—Aw=&w—[_ﬁ%

Hence u £W'P(IR).
Remark: The extension operator is not unique. It depends heavily on the choice of

7.
Definition: (Convolution). Let p be in L'(IR) and g in LP(IR). We define the
convolution of p and g by

pxg(x)= /oo p(x —y)g(y)dy, for almost every x € IR

— 00

Jension Inequality. If f > 0 and / - f(z)dz = 1 and ¢ > 0 continuous and
convex, then -
o ([ t9) < [ 1t0),
Properties:
1) pxg=g*p.

2) If pe L' and g € L, then p* g is in LP(IR). Moreover

lo* gllee < llpllzr - [lgllze-



3) If p € L'(IR), g € C°(IR), then p* g € L=(IR) Moreover we have

Th(pxg) —pxg=p*(Thg — 9)
and
1o * (Tng — g)lle < llpllztl|Thg — gl Lo~

Hence
lp* (Thg — g)|le — 0 as h — 0.

4 If f € LN(R) and ¢ € C}(IR) or C5°(IR), then fxp € C' or C* with (f*p)
5) If f and ¢ are of compact support, then f x ¢ is of compact support too.

Proof: 1)
| rla =gy =~ [ " pls)gle - s)ds.
using the change of variables s = — y = dy = —ds.
2) let
F= gy =, p2
||P||L1
B < el
g9(x dy |9(z — y)["dydx
||p||L ~ [Ipllo
that is (o)l
5119 * pll7s / dy/ l9(z —y)[Pdx = [|g]|Z,
[lolz, || o [lpllLr " oo
thus
lg = pllr < ol llgll e
3)

o g@I < [ ple =)l g®)ldy = llgl - ol

hence px g € L.
[ee]

Th(p* g)(xr) —g*plx) =

/
_ / p(W)]g(x +h—y) — g(z — y)]dy
/

88

88

N p(y)[mhg(z —y) — g(z — y)|dy

= px(mg —g)(z).

It is also clear that

lp* (Thg = 9l < llpllLrlTng = gllze

and hence ¢ is continuous, then ||7,9 — g|/z~ — 0 as h — 0.
4)

pW)gla+h—y)dy— [ pv)g( - y)dy

/

= fx¢'.



_ [:ﬂw[”$+h‘ﬁ‘¢@‘y”—wu—y>@.

and since ¢ € C}(IR), then we take limit to get

i @)@+ h) = (f*9)(2)
h—oo h

hence (f * ¢)'(x) = [+ ¢'(2).
Now, similarly if p € CZ(IR), then

(fre) =(f*¢) =fx¢"

and we continue to find that

—(fxe)(x)=0

(fx@)™ =fre™, Vm=123....
5) If support f C (—r,r) and support ¢ C (R, R), then supp f*x¢ C (—r— R,r+ R).
Let x > r+ 7, so

r

fro) = [ fwel - ydy

fex>r+R=c—-y>r+R—r=R= ¢z —y)== fxp(x)=0.
Similarly, if z < —r — R, we have f x ¢(x) = 0.
Lemma: Suppose that p € L'(IR) and v € W'P(IR). then (p*v) is in W?(IR) with

(pxv) =pxv.
Proof: First suppose that p is of compact support and let ¢ € C}(IR)

[ peue) = / | ol —y)¢ (w)dyd.
_ / / o () dydz
= t/(/kp<x——y>¢<x>dxﬁmy>dy
= [ Wy = — [ V(5% o))y
_ / / — y)p(a)dzdy = —/ /p (x — y)p(x)v' (y)dx)dy
= [o@) ([ ol =y )y ) do

=~ [+ ) @)p(@)dz, V¢ e CHR).
Here p(s) = p(—s). Moreover we have

p*p € Cy(IR) since v € W (IR)
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We conclude then
pxv € W with (pxv) = p*v.

Now, for p € L'(IR) there exists a sequence (p,) C C$°(IR) such that p, — p in L
norm. p, * v is in WH(IR) such that (p, *v) = p, * v’

1o v = pxvle = [[(pn = p) * vlle < llpn — pllia][v]|Le
S0 as n — 00, we get p, x v — p*xwv in LP. Similarly, we get
pn ¥V — pxvin LP.

Therefore p* v is in WYP(IR) with (pxv) = p* v/
Truncation. Let & be a C§°(IR) function with

)1, lz] <1

Eo(a) = ¢ (33) C on=1,2,3 .
n
Lemma: Let f be in LP(IR),1 < p < oo, Then &, f — f in LP.
Proof: |£,f — f|P — 0, almost everywhere on IR.

[6nf = FIP < 2271 (1617 + I£I7) < 271 fIP € LY(R)

So by the dominated convergence theorem we get

| tat = 17 =0,

We define

Modifiers: Let

exp[-1/(x —1)?], —-1l<z<l1
¢(x):{07p[ /(x = 1)’] ’<$|2<1

It is easy to check that ¢ € C§°(IR). We define the molifiers or the regularizing
sequences by

Ua@) = Zp(na),  a= [ vl
Properties
1) 22 ¥n(x)dx = 1.
2) ¥, — 6 in D' (IR) with suppt, C (—1/n,1/n), hence suppt,, — {0}.
Proof: 1) Direct integration
2) For p € C§°(IR), we have

[ n@)e@ds = o] = | [~ va@) @) - 0(0)] da
= 1= [T o) [o) — o(0)] @y
< i[rygﬂ (i)—w(o)l /_O:op(y)dy
< Lo (S - 0]~ 0



as n — oo since ¢ is uniformly continuous on [—1, 1]. Hence ¢, — ¢ in D'(IR).
Theorem (Density): Let u be in W'P(I),1 < p < oo,then there exitx a sequence
(un) C C§°(IR), such that w,; — u in W'P(I).

Proof: If I # IR we then extend u to IR by Pu. So let us suppose that I = IR. We
take u, = &,(pn * u)

un —ullp = [&(pn *u) — ull,
S ||§n(pn*u_u)||’p+||€nu_u||p
< nllosllon * w = ullp + [[&au — ul[, — 0

as n — oo by the above lemma
uln = g;z(pn *u) +E&n(pn * u/)a S0

’

lan = lly < 16 (pn % Wl + 116 (pn * 1) — 2|l

C ’ !/
< llully 1€ (pn + w) =]l — 0

as n — 00, by the same argument.



