
1 Dual of W
1,p
0 (Ω)

Notation: We denote byW−1,P ′

(Ω), the dual space of W 1,P (Ω), 1 ≤ p < +∞;
where 1

p
+ 1

p′
= 1.

We denote by H−1(Ω) the dual of H1
0
(Ω).

By identifying L2(Ω) to its dual, we obtain

H1

0
(Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

where the embedding is continuous and dense.
Proposition Let F ε W−1,p′(Ω). Then there exist f0, f1, . . . , fN Such that

〈F, φ〉 =

∫
Ω

f0φ+
N∑
i=1

∫
Ω

fi
∂φ

∂xi

, ∀φ ∈ H1

0
(Ω)

with

||F || = max
0≤i≤N

||fi‖L] .

Moreover, if Ω is bounded then f0 = 0.

2 Boundary-value problems

Let Ω be a bounded open set of IRN and let Γ = ∂Ω.
We are looking a function u : Ω −→ IR satisfying

(P1)

{
−∆u+ u = f in Ω

u = 0 on Γ

where f is a given function defined in Ω.
u = 0 on Γ is called a “homogeneous” Dirichlet condition.
Definition (Weak solution): By a weak solution of (P ), we mean a function
u ∈ H1

0
(Ω) satisfying∫

Ω

(∇u .∇v + uv)dx =

∫
Ω

fvdx, ∀v ∈ H1

0
(Ω).

Existence and Uniqueness

To prove the existence of a unique (weak) solution. It suffices to note
that

(u, v) −→

∫
Ω

(∇u .∇v + uv)dx
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is a scalar product on H1

0
(Ω) and

v −→

∫
Ω

fv is a continuous bilinear form

is a bounded linear form. So, by the Riesz representation theorem ∃!u ε H1

0
(Ω)

such that ∫
Ω

(∇u .∇v + uv)dx =

∫
Ω

fvdx, ∀ v ∈ H ′
0
(Ω).

Proposition (classical solution)
Any weak solution, u ε C2(Ω), is a classical solution of (P ).

Proof.
If u ε H1

0
(Ω)

⋂
C(Ω) then u = 0 on Γ (previous lemma). Hence the

boundary condition is satisfied.
Let φ ε C∞

0
(Ω) then we have∫

Ω

(−∆u+ u)φ =

∫
fφ, ∀ φ ∈ C∞

0
(Ω).

Thus,

−∆u+ u = f a.e. in Ω

since C∞
0

is dense in L2(Ω). Thus, we have −∆u+u = f in Ω since u ε C2(Ω).
Second-order elliptic equation:

Let Ω ⊂ IRN be bounded and open. Given aij(x) ∈ C1(Ω), i ≤ i, j ≤ N,

satisfying the elliptic condition

N∑
e1j=1

aij(x)ξiξj ≥ α|ξ|2, ∀x ∈ Ω, ∀ξ ∈ IRN , α > 0.

Let a0(x) ∈ C(Ω) also be given, with a0(x) ≥ 0, ∀x ∈ Ω. We would
like to find u : Ω −→ IR satisfying

(P2)

{
−
∑N

i,j=1

∂
∂xj

(
aij

∂u
∂xi

)
+ a0u = f in Ω

u = 0 on Γ

Definition: A weak solution of (P2) is a function u ∈ H1
0
(Ω) which satisfies

N∑
i,j=1

∫
Ω

(
aij

∂u

∂xi

∂v

∂xj

)
+

∫
Ω

(a0uv)dx =

∫
Ω

fv, ∀v ∈ H1

0
(Ω).
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Existence: We define the bilinear form

B : H1

0
(Ω)×H1

0
(Ω) → IR

by

B(u, v) =
N∑

i,j=1

∫
Ω

aij
∂u

∂xi

∂v

∂xj

+

∫
Ω

a0uv

Since a0, aij ∈ C(Ω) then

|B(u, v)| ≤ C

(∫
|∇u|2

)1
2
(∫

|∇v|2
) 1

2

+ c0‖u‖L2‖v‖L2

≤ C̃
[
‖u‖H1

0
‖v‖H1

0

]
i.e. B is continuous. Also

B(u, u) ≥ α‖∇u‖2L2 = α‖∇u‖H1
0

So, B is coercive. Lax Milgram Lemma then guarantees the existence of a
unique weak solution for (P2).
Neumann conditions:

Let Ω ⊂ IRN be open and bounded of class C1. We look for a function,
u : Ω → IR, which satisfies

(P3)

{
−∆u+ u = f in Ω

∂u
∂η

= 0 on Γ

∂u
∂η

= ∇u · η is the normal derivative. �η is the unit outer normal to Γ.

Definition: ∂u
∂η

= 0 is called ”homogeneous” Neumann condition

Definition: A weak solution of (P3) is a function u ∈ H1(Ω) which satisfies∫
Ω

(∇u · ∇v + uv)dx =

∫
Ω

fv, ∀v ∈ H1(Ω).

Definition: A classical solution is a function u ε C2(Ω)
⋂
C1(Ω̄) satisfying

(P3).
Proposition. Every classical solution is a weak solution.
Proof : Since u ∈ C1(Ω̄) then u ∈ H1(Ω) [Ω is bounded]∫

Ω

(−∆u+ u)v =

∫
fv
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By using Green’s identity and the boundary condition, we arrive at∫
Ω

(∇u · ∇v + uv) =

∫
Ω

fv.

Since Ω is of class C1 and C1(Ω̄) is dense in H1(Ω) then∫
Ω

∇u · ∇v + uv =

∫
fv, ∀v ε H1(Ω). (2.1)

So, u is a weak solution.
Theorem: If f ∈ L2Ω) then ∃!u ε H1(Ω) such that (2.1) is satisfied. u is
the unique weak solution of (P3).
Proof : We use Lax-Milgram lemma.
Proposition if u is a weak solution of (P3) such that u ε C2(Ω) ∩ C1(Ω̄).
Then u is a classical solution.
Proof: Since u ε C2(Ω) ∩ C1(Ω̄). Then, we have∫

Γ

∂u

∂η
v +

∫
Ω

(−∆u+ u)v =

∫
fv, ∀v ∈ H1(Ω)

Since C1
0
(Ω) ⊂ H1(Ω) then∫

Ω

(−∆u+ u)v =

∫
Ω

fv, ∀v ∈ C1

0
(Ω)

So, ∆u+ u = f in L2(Ω), hence a.e (then every where since u ε C2). Conse-
quently, ∫

Γ

∂u

∂η
v = 0, ∀v ∈ C(Ω̄)

∂u

∂η
= 0 on Γ.
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