1 Dual of W,"(Q)

Notation: We denote by W1 (Q), the dual space of WF(Q), 1 < p < +o0;
where % + ]% =1

We denote by H1(Q2) the dual of HJ ().

By identifying L?*(€2) to its dual, we obtain

H}(Q) c L*(Q) c H(Q).

where the embedding is continuous and dense.
Proposition Let F' ¢ W~ (). Then there exist fy, fi,..., fy Such that

N
(F,¢>:/Qf0¢+2/ﬂfi§—z, Vo € Hi(Q)

with

1 F]| = max {[f|-

0<i<N

Moreover, if €2 is bounded then f; = 0.
2 Boundary-value problems

Let € be a bounded open set of IFiN and let I' = 0f).
We are looking a function u : 2 — IR satisfying

(Pl){—Au—i-u:f in

u=>0 onI

where f is a given function defined in ).

u =0 on ['is called a “homogeneous” Dirichlet condition.

Definition (Weak solution): By a weak solution of (P), we mean a function
u € H}(Q) satisfying

/(Vu .Vv—f—uv)dx:/fvdm, Yo € Hy(Q).
Q Q

Existence and Uniqueness
To prove the existence of a unique (weak) solution. It suffices to note
that

(u,v) — /Q(Vu Vv +uv)dx
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is a scalar product on Hj () and
v —> / fv is a continuous bilinear form
Q

is a bounded linear form. So, by the Riesz representation theorem Jlu ¢ HJ (£2)
such that

/(Vu Vv 4 wv)dr = / fvdz, Yve HyQ).
Q Q

Proposition (classical solution)

Any weak solution, u ¢ C?(Q), is a classical solution of (P).
Proof.

If ue H(Q)NC(Q) then u = 0 on T' (previous lemma). Hence the
boundary condition is satisfied.

Let ¢ € C§°(2) then we have

[aurwo= [ 1o voe cr@.
)
Thus,

—Au+u=f a.e. in )

since Cg° is dense in L?(Q2). Thus, we have —Au+u = f in  since u e C?(Q).
Second-order elliptic equation:

Let  C IRY be bounded and open. Given a;;(z) € C*(Q),i <4,j < N,
satisfying the elliptic condition

N
Z aij(2)6;¢; > aléf, Vo € Q, V&€ € RY, a>0.

eljZI

Let ag(r) € C(Q) also be given, with ag(z) > 0, Vz € Q. We would
like to find u :  — IR satisfying

(Py) —Zﬁ;:l % (aij%) + agu = f in €2
u=0onT
Definition: A weak solution of (P,) is a function u € H{(f2) which satisfies
N
ou 81}) / / )
ai;——— | + [ (apuv)dz = | fv, Yo € Hy(Q).
Z;\L( Jal‘ial‘j Q( 0 ) Q 0( )
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Existence: We define the bilinear form
B: H;(Q) x Hj(Q) — R
by
ou Ov
B(u,v) Z/ ;5 axz 8% /anuv
4,j=1

Since ag,a;; € C(Q) then

ol <o ([19a) ([1908) sl

< C [l vl |

i.e. B is continuous. Also

B(u,u) > af|Vul[7: = o Vul

So, B is coercive. Lax Milgram Lemma then guarantees the existence of a
unique weak solution for (F2).
Neumann conditions:

Let Q ¢ IRY be open and bounded of class C*. We look for a function,
u : Q — IR, which satisfies

(PB){—Au—l—u—f in

gz =0on I
g_:; = Vu - n is the normal derivative. 7j is the unit outer normal to I'.
Definition: g_:; = ( is called "homogeneous” Neumann condition

Definition: A weak solution of (P3) is a function u € H'(2) which satisfies
/(Vu Vo + w)dr = / fv, Yo € HYQ).
Q Q

Definition: A classical solution is a function u e C?(2) (N C1(Q2) satisfying

(Ps).
Proposition. Every classical solution is a weak solution.
Proof: Since u € C'(Q) then v € H'(Q) [Q is bounded]

/Q(—Au—i—u)v:/fv

3



By using Green’s identity and the boundary condition, we arrive at

/Q(Vu-Vv—Hw):/ﬂfv.

Since € is of class C* and C*(Q) is dense in H'(2) then

/Vu-Vv+uv:/fv, Vo e H'(Q). (2.1)
Q

So, u is a weak solution.

Theorem: If f € L?Q) then Jlu e H'(2) such that (2.1) is satisfied. u is
the unique weak solution of (Ps).

Proof: We use Lax-Milgram lemma.

Proposition if u is a weak solution of (P3) such that u ¢ C?(2) N CH(Q).
Then u is a classical solution.

Proof: Since u ¢ C2(Q2) N C*(Q). Then, we have

/@v—%/(—Au—i—u)v:/fv, Yo € HYN)
r On Q
Since C}(2) € H'(Q) then

/Q(—Aquu)v:/va, Yo € CLQ)

So, Au+u = f in L?(f2), hence a.e (then every where since u ¢ C?). Conse-
quently,

ou _

—v=0, Yo € C(Q2

o (€2)
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