1 Dual of $W_{0}^{1, p}(\Omega)$

Notation: We denote by $W^{-1, P^{\prime}}(\Omega)$, the dual space of $W^{1, P}(\Omega), 1 \leq p<+\infty$; where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
We denote by $H^{-1}(\Omega)$ the dual of $H_{0}^{1}(\Omega)$.
By identifying $L^{2}(\Omega)$ to its dual, we obtain

$$
H_{0}^{1}(\Omega) \subset L^{2}(\Omega) \subset H^{-1}(\Omega)
$$

where the embedding is continuous and dense.
Proposition Let $F \in W^{-1, p^{\prime}}(\Omega)$. Then there exist $f_{0}, f_{1}, \ldots, f_{N}$ Such that

$$
\langle F, \phi\rangle=\int_{\Omega} f_{0} \phi+\sum_{i=1}^{N} \int_{\Omega} f_{i} \frac{\partial \phi}{\partial x_{i}}, \quad \forall \phi \in H_{0}^{1}(\Omega)
$$

with

$$
\|F\|=\max _{0 \leq i \leq N}\left\|f_{i}\right\|_{L^{\jmath}} .
$$

Moreover, if Ω is bounded then $f_{0}=0$.

2 Boundary-value problems

Let Ω be a bounded open set of \mathbb{R}^{N} and let $\Gamma=\partial \Omega$.
We are looking a function $u: \bar{\Omega} \longrightarrow \mathbb{R}$ satisfying

$$
\left(P_{1}\right)\left\{\begin{array}{cc}
-\Delta u+u=f & \text { in } \Omega \\
u=0 & \text { on } \Gamma
\end{array}\right.
$$

where f is a given function defined in Ω.
$u=0$ on Γ is called a "homogeneous" Dirichlet condition.
Definition (Weak solution): By a weak solution of (P), we mean a function $u \in H_{0}^{1}(\Omega)$ satisfying

$$
\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x=\int_{\Omega} f v d x, \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Existence and Uniqueness

To prove the existence of a unique (weak) solution. It suffices to note that

$$
(u, v) \longrightarrow \int_{\Omega}(\nabla u \cdot \nabla v+u v) d x
$$

is a scalar product on $H_{0}^{1}(\Omega)$ and

$$
v \longrightarrow \int_{\Omega} f v \text { is a continuous bilinear form }
$$

is a bounded linear form. So, by the Riesz representation theorem $\exists!u \epsilon H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x=\int_{\Omega} f v d x, \quad \forall v \in H_{0}^{\prime}(\Omega) .
$$

Proposition (classical solution)
Any weak solution, $u \in C^{2}(\bar{\Omega})$, is a classical solution of (P).
Proof.
If $u \in H_{0}^{1}(\Omega) \bigcap C(\bar{\Omega})$ then $u=0$ on Γ (previous lemma). Hence the boundary condition is satisfied.

Let $\phi \in C_{0}^{\infty}(\Omega)$ then we have

$$
\int_{\Omega}(-\Delta u+u) \phi=\int f \phi, \quad \forall \phi \in C_{0}^{\infty}(\Omega) .
$$

Thus,

$$
-\Delta u+u=f \quad \text { a.e. in } \Omega
$$

since C_{0}^{∞} is dense in $L^{2}(\Omega)$. Thus, we have $-\Delta u+u=f$ in Ω since $u \in C^{2}(\bar{\Omega})$. Second-order elliptic equation:

Let $\Omega \subset \mathbb{R}^{N}$ be bounded and open. Given $a_{i j}(x) \in C^{1}(\bar{\Omega}), i \leq i, j \leq N$, satisfying the elliptic condition

$$
\sum_{e 1_{j}=1}^{N} a i_{j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2}, \quad \forall x \in \Omega, \quad \forall \xi \in \mathbb{R}^{N}, \quad \alpha>0
$$

Let $a_{0}(x) \in C(\bar{\Omega})$ also be given, with $a_{0}(x) \geq 0, \forall x \in \Omega$. We would like to find $u: \bar{\Omega} \longrightarrow \mathbb{R}$ satisfying

$$
\left(P_{2}\right)\left\{\begin{aligned}
-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right)+a_{0} u & =f \text { in } \Omega \\
u & =0 \text { on } \Gamma
\end{aligned}\right.
$$

Definition: A weak solution of $\left(P_{2}\right)$ is a function $u \in H_{0}^{1}(\Omega)$ which satisfies

$$
\sum_{i, j=1}^{N} \int_{\Omega}\left(a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right)+\int_{\Omega}\left(a_{0} u v\right) d x=\int_{\Omega} f v, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Existence: We define the bilinear form

$$
B: H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}
$$

by

$$
B(u, v)=\sum_{i, j=1}^{N} \int_{\Omega} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\int_{\Omega} a_{0} u v
$$

Since $a_{0}, a_{i j} \in C(\bar{\Omega})$ then

$$
\begin{aligned}
|B(u, v)| & \leq C\left(\int|\nabla u|^{2}\right)^{\frac{1}{2}}\left(\int|\nabla v|^{2}\right)^{\frac{1}{2}}+c_{0}\|u\|_{L^{2}}\|v\|_{L^{2}} \\
& \leq \tilde{C}\left[\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right]
\end{aligned}
$$

i.e. B is continuous. Also

$$
B(u, u) \geq \alpha\|\nabla u\|_{L^{2}}^{2}=\alpha\|\nabla u\|_{H_{0}^{1}}
$$

So, B is coercive. Lax Milgram Lemma then guarantees the existence of a unique weak solution for $\left(P_{2}\right)$.
Neumann conditions:
Let $\Omega \subset \mathbb{R}^{N}$ be open and bounded of class C^{1}. We look for a function, $u: \bar{\Omega} \rightarrow \mathbb{R}$, which satisfies

$$
\left(P_{3}\right)\left\{\begin{aligned}
-\Delta u+u & =f \text { in } \Omega \\
\frac{\partial u}{\partial \eta} & =0 \text { on } \Gamma
\end{aligned}\right.
$$

$\frac{\partial u}{\partial \eta}=\nabla u \cdot \eta$ is the normal derivative. $\vec{\eta}$ is the unit outer normal to Γ.
Definition: $\frac{\partial u}{\partial \eta}=0$ is called "homogeneous" Neumann condition
Definition: A weak solution of $\left(P_{3}\right)$ is a function $u \in H^{1}(\Omega)$ which satisfies

$$
\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x=\int_{\Omega} f v, \quad \forall v \in H^{1}(\Omega) .
$$

Definition: A classical solution is a function $u \in C^{2}(\Omega) \bigcap C^{1}(\bar{\Omega})$ satisfying $\left(P_{3}\right)$.
Proposition. Every classical solution is a weak solution.
Proof: Since $u \in C^{1}(\bar{\Omega})$ then $u \in H^{1}(\Omega)[\Omega$ is bounded $]$

$$
\int_{\Omega}(-\Delta u+u) v=\int f v
$$

By using Green's identity and the boundary condition, we arrive at

$$
\int_{\Omega}(\nabla u \cdot \nabla v+u v)=\int_{\Omega} f v .
$$

Since Ω is of class C^{1} and $C^{1}(\bar{\Omega})$ is dense in $H^{1}(\Omega)$ then

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v+u v=\int f v, \quad \forall v \in H^{1}(\Omega) . \tag{2.1}
\end{equation*}
$$

So, u is a weak solution.
Theorem: If $f \in L^{2} \Omega$) then $\exists!u \in H^{1}(\Omega)$ such that (2.1) is satisfied. u is the unique weak solution of $\left(P_{3}\right)$.
Proof: We use Lax-Milgram lemma.
Proposition if u is a weak solution of $\left(P_{3}\right)$ such that $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$. Then u is a classical solution.
Proof: Since $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$. Then, we have

$$
\int_{\Gamma} \frac{\partial u}{\partial \eta} v+\int_{\Omega}(-\Delta u+u) v=\int f v, \quad \forall v \in H^{1}(\Omega)
$$

Since $C_{0}^{1}(\Omega) \subset H^{1}(\Omega)$ then

$$
\int_{\Omega}(-\Delta u+u) v=\int_{\Omega} f v, \quad \forall v \in C_{0}^{1}(\Omega)
$$

So, $\Delta u+u=f$ in $L^{2}(\Omega)$, hence a.e (then every where since $u \in C^{2}$). Consequently,

$$
\begin{gathered}
\int_{\Gamma} \frac{\partial u}{\partial \eta} v=0, \quad \forall v \in C(\bar{\Omega}) \\
\frac{\partial u}{\partial \eta}=0 \text { on } \Gamma
\end{gathered}
$$

