1 Embedding

Sobolev Inequalities
In the one-dimensional case, we saw that W%P(I) is embedded continuously in

L>(I). However, in the higher dimensional case we saw examples, for which this type
of embedding is no longer true. To address this issue we start with the situation

where Q = RV,
Lemma. Suppose, for N > 2, that fi, fa,..., fxv € LV"'(RY™'). Then
f(l’) = fl ([L’g, .. .[L’N) fg (1'1,1'3, .. .,ZL’N) .. .fN (1'1,1'2, e ,l’]\_l) € LI(IRN)

and
N
||fHL1(]RN) < H HfiHLNfl(RNfl)
i=1

Proof. The case N = 2 is trivial. Consider the case N = 3

[1@ldzs = 1fs ()| [ 1 Gws) | 1fa (o1, 2s) | dos

< Ustowmn) | ([ 1 G Fa) ([ 1) o)

We then integrate with respect to 1

//|f(37)|d$3d371 < /|f3 (21, 22) | (/|f1|2d953)% </|f2|2d$3>% dxy
(/|f1\2d5€3>%/|f3\ (/|f2\2df€3>%d$€1

By using Cauchy-Schwarz, we get

//|f|d:)33dx1 = </|f1|2d:):3>% </|f3|2d$1)% ||f2||L2(R2)'

Now, we integrate with respect to zs, so we obtain

///|f‘dx < ||f2HL2(R2)/</|f1\2d5€3>% (/\f3|2dx1)% dxs

< ||f2||L2(]R2)||f1||L2(R2)||f3||L2(]R2)-

IA

For N > 3, we use induction. Assume that the assertion of the lemma is true for
N — 1 and prove it for N.

/]RN71|f|d!L"1---d£EN—1 :/]RN71|f1|"'|fN—l| |fnldz, .. den—y
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by Holder’s inequality, where

1 1 N-1
— =1=N'=_"—
N_i '™ N-—2

Since f; € LN"Y RN =
|fi|% € LN72(IRN~?), for each fixed , zy.

We then apply the induction hypothesis to get

N1 N1
/]RM1 |72 v M2 da, . dane < H ||szLN LRN-2)

Hence
N-1

/RN*l | fldzy ... dzy < ||fN||LN*1(]RN*1) H ||fi||LN*1(]RN*2)'

i=1
The function
Fi(zn) = ||fill v LRN-2); 1< <N-—-1,

belongs to LV ~1(IR) since

J VR o) Y = [ LAY e da < o0

by hypothesis. Therefore, as a consequence of Holder’s inequality, we have

N—
H F e L'(R

which gives, by integration,

N—
/ H Fd{L’N H ||fi||LN71(]RN71)

hence
N
Jo 116 TEA s

Theorem (Sobolev, Gagliardo, Nirenberg)
Suppose that 1 < p < N. Then

Wi (RY) ¢ P (RY), —=-——.

Moreover there exists a constant C' = C(N, p) such that

lullze < ClIVUllze,  Vu € WH(RY)



Proof. Let v € C}(IRY), so we have

o, ay)| = (t, 29, ..., dt</°°
|’U(SL’1 ) | ‘/ 81’1 T LL’N) ‘_ .

Similarly, we have for 1 <i < N

o | Qv .
lv(z)| g/_ ‘ag;- (@1, Tit, by Tigs - - 2)| dE = £ (),
where i’l = (Il, P P [P 7T IR ,ZL’N) . Thus
N N
(@)™ < T fi (),
i=1
or

Since each g; = f¥ ' (2;) € LN ! (]RN_l) , then |v(:c)|% € L*(RY) by the previous
lemma and

Ny N N ¥
V() | VT fi
fo ™7 < TG = T | 5 e
hence 1
~
v A
H L= axl Ll(]RN)
We then take v = u"tu, for r > 1, we have
N ou ||V
ull”y a < e[| A
L N=T(RT) i—1 O LY(RVN)
ou
< rlull - o
Lp'(r=1) bl 8:):,~ L
We choose then r in such a way that
rIN ,
—p(r—1
which gives
N-1, . Np
T = prm—
Consequently we have
8u ¥ p(N-1)
=N |Vullr, Vue C3H(IRM)
Lp




Now for u € WP(IRY), there exists a sequence (u,) C C}(IR") such that u, — u
in Wh(RY) and u,, — u a.e. (taking a subsequence if needed). So

N -1
et [ < p(]\fiﬂjwunnm.
By using Fatou’s lemma and taking n to oo, we get
N -1
ol e < p(Ni_p)IIVUHLP-

Corollary: For 1 < p < N, then
WP (RY) C LY(RY) Vg elp, pl.

Proof. g=ap+ (1 —a)p*, 0<a <1,

ult = Jul*+ul ™ = [l = [ al g

We use Holder’s inequality to get
* 1_
")

frr = ([)

< O8] Vul| 5 < O |ullf,

Hence
l[ullze < Cllul[we.

Corollary: (Case p = N)
WHENIRN) ¢ LYRY), Vge[N, +o0)

with continuous embedding.
Proof. Suppose that u € CJ(IRY), we then use the inequality

ou
al’i

N
[lll”, iy < rllullicow 11

(N-=1) i=1 LN

hence we have
||VUHLN Vi>1

lull, e <rllull el

Young’s inequality then gives

lull” gy = Callull” ooy gy + CallVulliw

T
< (||u||L<H)(NND +[17ull.)

Therefore

lull e < C [l oy + 1 Vuls]

(N
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By choosing » = N, we obtain
ull, v < Cllullwes

By using the interpolation result, then it comes that

|ullze < Cllullwry, Vg e

2

v

we then take r = N +1, N +2,..., etc. to obtain
lullzs < Cllullwrn, Vg € [N, +00).

Theorem.(Morrey)
Let p > N, then W'P(IRY) ¢ L>(IRY) with continuous embedding. Moreover,
we have
u(z) —u(y)| < Clo = y[*|Vullzs, ae. z,y € RY

where

azl—% and C' = C(N,p).
Remark. The above inequality implies the existence of a function @ € C%*(IR")
such that u = @ for almost every z,y € IRY. We then say that W'?, for p > N,
functions are Holder continuous.
Proof. Let u € C}(IR") and @, be a cube containing the origin with sides parallel
to the axes, with length = r. So for x € (), we have

1d
u(z) — u(0)] = /o£< /le ) dt’
< /Z\xz dt<r2/ ]
It 1
u= m/@u(m)dm, |Qo| :/Qodx:rN
then
_ 1
-0l = 5 /Qo(u(x)—u( da;‘<m/% 0)| dr
< |Qo|/ /Qo 0:)3, (tx)| dz dt
< TN—l o 8:61 dydt (tx =y)

We then use Holder’s inequality to estimate

ou ou | > 7
ou N ou N(p—1)
< p = p
< o] @? =5 o




1 ¢N(-1)/p p
t

Therefore we get
_ L Ne-p
lu —u(0)] < o ||vu||LP(Qo)/O N
N

rp
IVl e (qo)

1N
P

But this last inequality remains valid, by translation, for any cube ) with sides of

length r and parallel to the axes, hence we obtain for any x( in this cube
1-N
_ ror
i u(zo)| < T lIVul o)
p

Thus, for xg,yo € Q, we get
1-N

r-p

~ |[Vullz,@)

o) = )] < 27—

Now for any z,y € IRY, we can find a cube @ with sides of length r = 2|z —y| parallel

21 |z — y|'>
< 22U 9 g,
p

_N
Cl =y 7| Vull o)

to the axes and containing x, y; consequently

u(z) = u(y)]
<

for any u € C3(IRY).
For u € W'P(IRY), we use a sequence (u,) C C}(IR") such that u, — u in
W'P(RY) and u, — u a.e. x is IR". Hence the second assertion of the theorem is

established.
To establish the L* bound, we use
ju(z) — a| < Cf|Vul|Lrq),

which implies for a cube containing x and with r = 1,
— ﬂ”quL?’(Q)

p

ju(@)] < [al + 1

By using
il < o7/ 1u)ldy < [l @)@ = [l
We arrive at
1 1
(1Vull o) + 1l @) < 7w llullwrs)
p

u(@)| < —
p
6



for any u € C§e(R™).
If u € WH(IRY), we then approximate it by a sequence (u,) in C§¢(IR™) which
converges to u in W'P(IRY) and almost everywhere. Thus we obtain the desired

result.
Corollary. If u € W'"?(IRY), N < p < co. Then lim wu(x) = 0.

|z|—o0

Proof. We approximate by a sequence (u,) C C$(IRY). So,
W'P(IRY) and lim [|u, — uf| = 0. So

Ve >0, Ing € R sucthat Vn > ng, |u,(z) —u(z)| <e, Va € RY, which implies
that

lim u, = wu in
n——m-mo0

lu(z)| < |un(z)| +e, Yz eRY, Vn>ne.

If |#| — oo then wu,(x) — 0, therefore

lim |u(z)] <e, Ve>0= |lim lu(z)| = 0.



