Lemma. (Partition of Unity)

Let $S \subset \mathbb{R}^{N}$ be compact and $O_{1}, O_{2}, \ldots O_{k}$ be open covering S; that is $S \subset \bigcup_{i=1}^{k} O_{i}$. Then there exist functions $\psi_{0}, \psi_{1}, \ldots, \psi_{k} \in C^{\infty}\left(\mathbb{R}^{N}\right)$ such that
(i) $0 \leq \psi_{i} \leq 1, \quad \forall i=0,1,2, \ldots, k$ and $\sum_{i=0}^{k} \psi_{i}=1$.
(ii) supp $\psi_{i} \subset O_{i}, \quad \forall i=1,2, \ldots, k$ and supp $\psi_{o} \subset \mathbb{R}^{N} \backslash S$

Proof. For each $x \in S$, there exists r_{x} such that the ball $B\left(x, 2 r_{x}\right) \subset O_{i}$, for some $i \in\{1,2, \ldots, k\}$.

Since S is compact then there exist a finite number of balls $\left(B\left(x_{i}, r_{x_{i}}\right)\right)$ covering S; that is $S \subset \bigcup_{i=1}^{m} B\left(x_{i}, r_{x_{i}}\right)$.

Let $\varepsilon=\min _{1 \leq i \leq m} r_{x_{i}}$ and set $O_{i, \varepsilon}=\left\{x \in O_{i} /\right.$ distance $\left.\left(x, \partial O_{i}\right)>\varepsilon\right\}, i=1,2, \ldots k$. it is easy to check that $\left\{O_{i, \varepsilon}\right\}_{i=1}^{k}$ is a covering of S. Let

$$
O_{1}^{\prime}=O_{1, \varepsilon}, \quad O_{j}^{\prime}=O_{j} \backslash \bigcup_{i=1}^{k-1} O_{i, \varepsilon}, \quad \forall_{j}=2, \ldots k \text { and } O_{0}=\bigcup_{i=1}^{k} O_{i}=\bigcup_{i=1}^{k} O_{i, \varepsilon}
$$

Let $\chi_{i}=\chi_{O_{i}^{\prime}}$ (the characteristic function), so $\sum_{i=1}^{k} \chi_{i}=1$ on $O_{0} \supset S$ since $\left(O_{i}^{\prime}\right)$ are pairwise disjoint. define

$$
\psi_{i}=\rho_{h} * \chi_{i}, \quad h<\min \left\{\frac{\varepsilon}{2}, \text { dist }\left(S, \partial O_{0}\right)\right\}
$$

So

$$
\psi_{i} \in C^{\infty}\left(\mathbb{R}^{N}\right) \text { and } \psi_{i}(x)=0, \quad \forall x / \operatorname{dist}\left(x, O_{i}^{\prime}\right)>h
$$

hence $\psi_{i} \in C_{0}^{\infty}\left(O_{i}\right)$. Also

$$
\begin{aligned}
\sum_{i=1}^{k} \psi_{i} & =\sum_{i=1}^{k} \int_{\mathbb{R}^{N}} \rho_{h}(x-y) \psi_{i}(y) d y \\
& =\int_{\mathbb{R}^{N}} \rho_{h}(x-y) \sum_{i=1}^{k} \psi_{i}(y) d y=\int_{\mathbb{R}^{N}} \rho_{h}=1, \quad \forall x \in O_{o} \supset S
\end{aligned}
$$

Proposition (Change of variables)
Let $H: \Omega^{\prime} \longrightarrow \Omega$ be a bijection with Ω, Ω^{\prime} opens of \mathbb{R}^{N} and such that

$$
H \in C^{1}\left(\Omega^{\prime}\right), \quad H^{-1} \in C^{1}(\Omega), \quad \operatorname{Jac} H \in L^{\infty}\left(\Omega^{\prime}\right), \quad \operatorname{Jac} H^{-1} \in L^{\infty}(\Omega)
$$

If $u \in W^{1, p}(\Omega)$ then $u o H \in W^{1, p}\left(\Omega^{\prime}\right)$ with

$$
\frac{\partial}{\partial y_{i}}(u o H)(y)=\sum_{i=1}^{N} \frac{\partial u}{\partial x_{i}}(H(y)) \frac{\partial H_{i}}{\partial y_{j}}(y), \quad 1 \leq i \leq N .
$$

Here $H(y)=x$.
Proof: For $1 \leq p<\infty$, we choose a sequence $\left(u_{n}\right) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $u_{n} \longrightarrow u$ in $L^{p}(\Omega)$ and $\nabla u_{n} \longrightarrow \nabla u$ in $\left[L^{p}(\omega)\right]^{N}, \quad \forall \omega \subset \subset \Omega$.. So

$$
u_{n} o H \longrightarrow u o H \text { in } L^{p}\left(\Omega^{\prime}\right)
$$

and

$$
\frac{\partial u_{n}}{\partial x_{i}} o H \longrightarrow \frac{\partial u}{\partial x_{i}} o H \text { in } L^{p}\left(\omega^{\prime}\right), \quad \forall \omega^{\prime} \subset \subset \Omega^{\prime}
$$

By taking $\phi \in C_{0}^{1}\left(\Omega^{\prime}\right)$, we easily see that

$$
\int_{\Omega^{\prime}}\left(u_{n} o H\right) \frac{\partial \phi}{\partial y_{j}}=-\int_{\Omega^{\prime}} \sum_{i=1}^{N}\left(\frac{\partial u_{n}}{\partial x_{i}} o H\right) \frac{\partial H_{i}}{\partial y_{j}} \phi
$$

By letting n go to ∞, we arrive to the desired result. For $p=+\infty$, we proceed like the previous theorems.
Theorem. (Extension Theorem)
Suppose that Ω is of class C^{1} with $\partial \Omega$ bounded (or $\Omega=\mathbb{R}_{+}^{N}$). Then there exists an extension operator

$$
P: W^{1, p}(\Omega) \longrightarrow W^{1, p}\left(\mathbb{R}^{N}\right)
$$

linear and such that $\forall u \in W^{1, p}(\Omega)$
(i) $P u_{\left.\right|_{\Omega}}=u$
(ii) $\|P u\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq C\|u\|_{L^{p}(\Omega)}$
(iii) $\|P u\|_{W^{1, p}\left(\mathbb{R}^{N}\right)} \leq C\|u\|_{W^{1, p}(\Omega)}$.
C is a constant depending on p and Ω.
Proof. Since $\partial \Omega$ is compact and of class C^{1}, then there exists k opens $\left(O_{i}\right)_{i=1}^{k}$ such that $\partial \Omega \subset \bigcup_{i=1}^{k} O_{i}$ and bijections $H_{i}: Q \longrightarrow O_{i}$ such that

$$
H_{i} \in C^{1}(\bar{Q}), \quad H_{i}^{-1} \in C^{1}\left(\bar{O}_{i}\right), \quad H_{i}\left(Q_{+}\right)=O_{i} \cap \Omega
$$

and

$$
H_{i}\left(Q_{0}\right)=O_{i} \cap \partial \Omega
$$

Consider the functions $\theta_{0}, \theta_{1}, \ldots, \theta_{k}$ seen in the partition of unity lemma. We then set

$$
u=u \sum_{i=0}^{k} \theta_{i}=\sum_{i=0}^{k} u \theta_{i}=\sum_{i=0}^{k} u_{i}, \quad u_{i}=u \theta_{i}
$$

Extension of $\mathbf{u}_{\mathbf{0}}$: Let

$$
\tilde{u}_{0}(x)= \begin{cases}u_{0}(x) & , x \in \Omega \\ 0 & , x \in \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

and note that

$$
\theta_{0} \in C^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right), \quad 0 \leq \theta_{0} \leq 1, \quad \nabla \theta_{0} \in\left[L^{\infty}\left(\mathbb{R}^{N}\right)\right]^{N}
$$

since

$$
\nabla \theta_{0}=-\sum_{i=1}^{k} \nabla \theta_{i}, \quad \operatorname{supp} \theta_{i} \subset O_{i}, \quad \forall i=1,2, \ldots k
$$

and $\operatorname{supp} \theta_{i}$ is compact. Therefore

$$
\widetilde{u}_{0} \in W^{1, p}\left(\mathbb{R}^{N}\right), \quad \frac{\partial}{\partial x_{i}} \widetilde{u}_{0}=\theta_{0} \frac{\widetilde{\partial u}}{\partial x_{i}}+\tilde{u} \frac{\partial \theta_{0}}{\partial x_{i}}
$$

hence

$$
\left\|u_{0}\right\|_{W^{1, p}\left(\mathbb{R}^{N}\right)} \leq C\|u\|_{W^{1, p}(\Omega)},
$$

where C is constant depending on the L^{∞} norm of θ_{0} and $\nabla \theta_{0}$.
Extension of $\mathbf{u}_{i}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{k}$:
We consider the restriction of u to $O_{i} \cap \Omega$ and we "transport" it over Q_{+}by using H_{i}. For this, we define

$$
v_{i}(y)=u\left(H_{i}(y)\right), \quad \forall y \in Q_{+} .
$$

It is easy to verify that $v_{i} \in W^{1, p}\left(Q_{+}\right)$. We then extend v_{i} to Q by reflection and denote this extension by v_{i}^{*}, which belongs to $W^{1, p}(Q)$. We then "retransport back" v_{i}^{*} over O_{i} by using H_{i}^{-1}. Let

$$
w_{i}(x)=v_{i}^{*}\left[H_{i}^{-1}(x)\right], \quad \forall x \in O_{i} ;
$$

So

$$
w_{i} \in W^{1, p}\left(O_{i}\right) \text { and } w_{i}=u \text { over } O_{i} \cap \Omega
$$

with

$$
\left\|w_{i}\right\|_{W^{1, p}\left(O_{i}\right)} \leq C\|u\|_{w^{1, p}\left(O_{i} \cap \Omega\right)}
$$

Finally let

$$
\hat{u}_{i}(x)= \begin{cases}\theta_{i}(x) w_{i}(x) & , \quad \forall x \in O_{i} \\ 0 & , \quad \forall x \in \mathbb{R}^{N} \backslash O_{i}\end{cases}
$$

By the above lemma, we have

$$
\hat{u}_{i} \in W^{1, p}\left(\mathbb{R}^{N}\right), \quad \hat{u}_{i}=u_{i} \text { over } \Omega
$$

and

$$
\left\|\hat{u}_{i}\right\|_{W^{1, p}\left(\mathbb{R}^{N}\right)} \leq C\|u\|_{W^{1, p}\left(O_{i} \cap \Omega\right)}
$$

Conclusion. $P u=\tilde{u}_{0}+\sum_{i=1}^{k} \hat{u}_{i}$ has all desired properties.
Corollary (Density):

Suppose that Ω is of class C^{1} and let $u \in W^{1, p}(\Omega)$ be given with $1 \leq p<+\infty$. Then there exists a sequence $\left(u_{n}\right) \subset C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
u_{\left.n\right|_{\Omega}} \longrightarrow u \text { in } W^{1, p}(\Omega)
$$

Proof.

(1) If $\partial \Omega$ is bounded we then extend u to \mathbb{R}^{N} and then we take $u_{n}=\xi_{n}\left(\rho_{n} * P u\right)$, which converges to $P u$ in $W^{1, p}\left(\mathbb{R}^{N}\right)$. In particular $u_{\left.n\right|_{\Omega}} \longrightarrow u$ in $W^{1, p}(\Omega)$.
(2) If $\partial \Omega$ is unbounded, then we consider the sequence $\xi_{n} u$, where $\xi_{n}=\xi\left(\frac{x}{n}\right)$ and ξ is the truncation function. We know that $\xi_{n} u \longrightarrow u$ in $W^{1, p}(\Omega)$, so for $\varepsilon>0, \quad \exists n_{0} \in \mathbb{N}$ such that $\left\|\xi_{n_{0}} u-u\right\|_{W_{1, p}(\Omega)}<\frac{\varepsilon}{2}$.
Since supp $\xi_{n_{0}} u$ is included in a large ball we then extend $\xi_{n_{0}} u$ to \mathbb{R}^{N} and apply the above to get a function v_{ε} in $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\left\|v_{\varepsilon}-\xi_{n_{0}} u\right\|_{W^{1, p}}<\frac{\varepsilon}{2}$. Consequently

$$
\left\|u_{0}-v_{\varepsilon}\right\|_{W^{1, p}(\Omega)}<\varepsilon
$$

We then construct the sequence $\left(v_{\varepsilon}\right) \subset C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ which converges to u in $W^{1, p}(\Omega)$.

