
Lemma. (Partition of Unity)

Let S ⊂ IRN be compact and O1, O2, . . . Ok be open covering S; that is S ⊂
k⋃

i=1

Oi.

Then there exist functions ψ0, ψ1, . . . , ψk ∈ C∞(IRN) such that

(i) 0 ≤ ψi ≤ 1, ∀ i = 0, 1, 2, . . . , k and
k∑

i=0

ψi = 1.

(ii) supp ψi ⊂ Oi, ∀ i = 1, 2, . . . , k and supp ψo ⊂ IRN\S

Proof. For each x ∈ S, there exists rx such that the ball B(x, 2rx) ⊂ Oi, for some
i ∈ {1, 2, . . . , k}.

Since S is compact then there exist a finite number of balls (B (xi, rxi
)) covering

S; that is S ⊂
m⋃

i=1

B (xi, rxi
) .

Let ε = min1≤i≤m rxi
and setOi,ε = {x ∈ Oi/ distance (x, ∂Oi) > ε} , i = 1, 2, . . . k .

it is easy to check that {Oi,ε}k
i=1 is a covering of S. Let

O′
1 = O1,ε , O′

j = Oj \
k−1⋃

i=1

Oi,ε, ∀j = 2, . . . k and O0 =
k⋃

i=1

Oi =
k⋃

i=1

Oi,ε

Let χi = χO′
i
(the characteristic function), so

∑k
i=1 χi = 1 on O0 ⊃ S since (O′

i) are
pairwise disjoint. define

ψi = ρh ∗ χi, h < min
{
ε

2
, dist (S, ∂ O0)

}

So
ψi ∈ C∞(IRN) and ψi(x) = 0, ∀x/ dist (x,O′

i) > h

hence ψi ∈ C∞
0 (Oi). Also

k∑

i=1

ψi =
k∑

i=1

∫

IRN
ρh(x− y)ψi(y)dy

=
∫

IRN
ρh(x− y)

k∑

i=1

ψi(y)dy =
∫

IRN
ρh = 1, ∀ x ∈ Oo ⊃ S.

Proposition (Change of variables)
Let H : Ω′ −→ Ω be a bijection with Ω, Ω′ opens of IRN and such that

H ∈ C1(Ω′), H−1 ∈ C1(Ω), JacH ∈ L∞(Ω′), JacH−1 ∈ L∞(Ω)

If u ∈ W 1,p(Ω) then uoH ∈ W 1,p(Ω′) with

∂

∂yi

(uoH)(y) =
N∑

i=1

∂u

∂xi

(H(y))
∂Hi

∂yj

(y), 1 ≤ i ≤ N.
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Here H(y) = x.
Proof: For 1 ≤ p < ∞, we choose a sequence (un) ∈ C∞

0 (IRN ) such that un −→ u
in Lp(Ω) and ∇un −→ ∇u in [Lp(ω)]N , ∀ω ⊂⊂ Ω.. So

unoH −→ uoH in Lp(Ω
′
)

and
∂un

∂xi
oH −→ ∂u

∂xi
oH in Lp(ω

′
), ∀ω′ ⊂⊂ Ω′

By taking φ ∈ C1
0(Ω

′), we easily see that

∫

Ω′
(unoH)

∂φ

∂yj
= −

∫

Ω′

N∑

i=1

(
∂un

∂xi
oH

)
∂Hi

∂yj
φ

By letting n go to ∞, we arrive to the desired result. For p = +∞, we proceed like
the previous theorems.
Theorem. (Extension Theorem)

Suppose that Ω is of class C1 with ∂Ω bounded
(
or Ω = IRN

+

)
. Then there exists

an extension operator
P : W 1,p(Ω) −→W 1,p(IRN)

linear and such that ∀ u ∈ W 1,p(Ω)

(i) Pu|Ω = u

(ii) ||Pu||Lp(IRN ) ≤ C||u||Lp(Ω)

(iii) ||Pu||W 1,p(IRN ) ≤ C||u||W 1,p(Ω).

C is a constant depending on p and Ω.
Proof. Since ∂Ω is compact and of class C1, then there exists k opens (Oi)

k
i=1 such

that ∂Ω ⊂
k⋃

i=1

Oi and bijections Hi : Q −→ Oi such that

Hi ∈ C1(Q̄), H−1
i ∈ C1

(
Ōi

)
, Hi(Q+) = Oi ∩ Ω

and
Hi(Q0) = Oi ∩ ∂ Ω

Consider the functions θ0, θ1, . . . , θk seen in the partition of unity lemma. We then
set

u = u
k∑

i=0

θi =
k∑

i=0

uθi =
k∑

i=0

ui, ui = uθi

Extension of u0: Let

ũ0(x) =




u0(x) , x ∈ Ω

0 , x ∈ IRN\Ω
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and note that

θ0 ∈ C1(IRN ) ∩ L∞(IRN), 0 ≤ θ0 ≤ 1, ∇θ0 ∈
[
L∞(IRN)

]N

since

∇θ0 = −
k∑

i=1

∇θi, supp θi ⊂ Oi, ∀ i = 1, 2, . . . k,

and supp θi is compact. Therefore

ũ0 ∈ W 1,p(IRN),
∂

∂xi
ũ0 = θ0

∂̃u

∂xi
+ ũ

∂θ0
∂xi

,

hence
||u0||W 1,p(IRN ) ≤ C||u||W 1,p(Ω),

where C is constant depending on the L∞ norm of θ0 and ∇θ0.
Extension of ui, 1 ≤ i ≤ k :

We consider the restriction of u to Oi ∩Ω and we ”transport” it over Q+ by using
Hi. For this, we define

vi(y) = u(Hi(y)), ∀y ∈ Q+.

It is easy to verify that vi ∈ W 1,p(Q+). We then extend vi to Q by reflection and
denote this extension by v∗i , which belongs to W 1,p(Q). We then ”retransport back”
v∗i over Oi by using H−1

i . Let

wi(x) = v∗i
[
H−1

i (x)
]
, ∀x ∈ Oi;

So
wi ∈ W 1,p(Oi) and wi = u over Oi ∩ Ω

with
||wi||W 1,p(Oi) ≤ C||u||w1,p(Oi∩Ω)

Finally let

ûi(x) =




θi(x)wi(x) , ∀x ∈ Oi

0 , ∀x ∈ IRN\Oi

By the above lemma, we have

ûi ∈ W 1,p(IRN ), ûi = ui over Ω

and
||ûi||W 1,p(IRN ) ≤ C||u||W 1,p(Oi∩Ω)

Conclusion. Pu = ũ0 +
k∑

i=1

ûi has all desired properties.

Corollary (Density):

3



Suppose that Ω is of class C1 and let u ∈ W 1,p(Ω) be given with 1 ≤ p < +∞.
Then there exists a sequence (un) ⊂ C∞

0 (IRN) such that

un|Ω −→ u in W 1,p(Ω).

Proof.

(1) If ∂Ω is bounded we then extend u to IRN and then we take un = ξn (ρn ∗ Pu) ,
which converges to Pu in W 1,p(IRN). In particular un|Ω −→ u in W 1,p(Ω).

(2) If ∂Ω is unbounded, then we consider the sequence ξnu, where ξn = ξ
(

x
n

)

and ξ is the truncation function. We know that ξnu −→ u in W 1,p(Ω), so for
ε > 0, ∃n0 ∈ IN such that ||ξn0u− u||W1,p(Ω) <

ε
2
.

Since supp ξn0u is included in a large ball we then extend ξn0u to IRN and apply
the above to get a function vε in C∞

0 (IRN) such that ||vε − ξn0u||W 1,p < ε
2
.

Consequently
||u0 − vε||W 1,p(Ω) < ε

We then construct the sequence (vε) ⊂ C∞
0 (IRN) which converges to u in W 1,p(Ω).
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