1 Classical L^{p} Spaces

1.1 Definitions and Properties

Definition: Let E be a measurable set of \mathbb{R}^{n}. We say that a function f is in $L^{p}(E)$, if f is measurable and $\int_{E}|f|^{p}<+\infty$.
Remark: The integral here is in the Lebesgue sense and $p \in(0,+\infty)$.
Proposition: $L^{p}(E)$ is a linear space.
Proof: f and g be in $L^{p}(E)$ and $\alpha \in \mathbb{R}$. It is clear that

$$
\begin{aligned}
\int_{E}|\alpha f|^{p} & =|\alpha|^{p} \int_{E}|f|^{p}<\infty \\
\int_{E}|f+g|^{p} & \leq 2^{p}\left(\int_{E}|f|^{p}+\int_{E}|g|^{p}\right)<\infty
\end{aligned}
$$

We equip $L^{p}(E)$ with the "natural" norm

$$
\|f\|_{p}=\left(\int|f|^{p}\right)^{1 / p}, \quad p \geq 1
$$

One can easily verify that this is, indeed, a norm.
Definition: We call $L^{\infty}(E)$ the set of all functions which are bounded on E, except maybe on a subset of measure zero.
Examples: 1) $f(x)=x$ is not in $L^{\infty}(\mathbb{R})$.
2)

$$
g(x)= \begin{cases}x, & x \in Q \\ 1, & \text { otherwise }\end{cases}
$$

is in $L^{\infty}(\mathbb{R})$. We have in this case $|g(x)| \leq 1$, a.e.
Definition: On $L^{\infty}(E)$, we define the norm by

$$
\|f\|_{\infty}=\operatorname{ess} \sup |f(t)|=\inf \{M: \operatorname{meas}\{t \quad / \quad|f(t)|>M\}=0\}
$$

In the previous example, $\|g\|_{\infty}=1$.
Proposition: If $f=g$ a.e. on E, then

$$
\|f\|_{p}=\|g\|_{p}, \quad \forall p \in[1,+\infty] .
$$

Exercise: If

$$
f(x)=\left\{\begin{array}{ll}
x, & x \text { irrational, } \\
1, & x \text { rational },
\end{array} .\right.
$$

show that $\|f\|_{\infty}=\infty$.
Theorem: (Hölder's inequality) Let p and q be nonnegative extended real numbers such that $\frac{1}{p}+\frac{1}{q}=1$. If $f \in L^{p}(E)$ and $g \in L^{q}(E)$, then $f g \in L^{1}(E)$ and $\int_{E}|f g| \leq$ $\|f\|_{p}\|g\|_{q}$.
Theorem: (Riesz-Fischer) The $L^{p}(E), \quad 1 \leq p \leq \infty$, equipped with the "natural" norm is complete (Banach space).
Remark: $L^{2}(E)$ is a Hilbert space. The inner product is $\langle f, g\rangle=\int_{E} f g$.

1.2 Bounded Linear Functionals on L^{p} Spaces

Given a fixed g in $L^{q}(E)$; we define the functional $F: L^{p}(E) \rightarrow \mathbb{R}$ by $F(f)=\int_{E} f g$.
This is well defined since $f \in L^{p}(E)$ and $L^{q}(E)$, for $\frac{1}{p}+\frac{1}{q}=1$.
Theorem: F is a linear functional such that $\|F\|=\|g\|_{L^{q}(E)}$.
Proof: let us remember that

$$
\|F\|=\sup _{f \neq 0} \frac{|F(f)|}{\|f\|_{p}}, \quad f \in L^{p}(E) . .
$$

So

$$
\begin{equation*}
|F(f)|=\left|\int f g\right| \leq\|f\|_{p} \cdot\|g\|_{q} \Rightarrow\|F\| \leq\|g\|_{q} \tag{1.1}
\end{equation*}
$$

Next, we set for, $1<p<\infty$

$$
h=|g|^{q / p} \operatorname{sing} g= \begin{cases}|g|^{q / p}, & g(x) \geq 0 \\ -|g|^{q / p}, & g(x)<0 .\end{cases}
$$

It is clear that $\int|h|^{p}=\int|g|^{q} \Rightarrow h \in L^{p}(E)$. So,

$$
\begin{aligned}
F(h) & =\int|g|^{q / p} g(\operatorname{sing} g)=\int|g|^{q / p}|g|=\int|g|^{q} \\
& =\|g\|_{q}^{q}=\|g\|_{q} \cdot\|g\|_{q}^{q-1}=\|g\|_{q}\|h\|_{p} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\frac{|F(h)|}{\|h\|_{p}}=\|g\|_{q} \Rightarrow\|F\| \geq\|g\|_{q} \tag{1.2}
\end{equation*}
$$

For (1) and (2), we obtain $\|F\|=\|g\|_{q}$.
Lemma: Let g be measurable on E. Suppose there exists $M>0$ such that

$$
\left|\int f g\right| \leq M\|f\|_{p}, \quad \text { for all } f \text { in } L^{p}(E)
$$

Then

$$
g \in L^{q} \text { and }\|g\|_{q} \leq M ; \quad(1 \leq p \leq \infty)
$$

Theorem: (Riesz Representation Theorem). Let F be a bounded linear functional on $L^{p}(E), 1 \leq p<\infty$. Then there exists g in $L^{q}(E), 1 / q+1 / p=1$, such that

$$
F(f)=\int_{E} f g, \quad \forall f \in L^{p}(E)
$$

Moreover, we have $\|F\|=\|g\|_{q}$.
Exercise: 1) Show that if E is a set of finite measure (bounded for example) and $f \in L^{p}(E)$, then $f \in L^{r}(E)$ for all $r \leq p$.
2) How about if E is of infinite measure (unbounded for example)?

