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Abstract

In this paper we consider the nonlinearly damped semilinear wave equation
utt ¡ ¢u+ autjutjm¡2 = bujujp¡2

associated with initial and Dirichlet boundary conditions. We prove that any
strong solution, with negative initial energy, blows up in ¯nite time if p > m:
This result improves an earlier one in [2].
Keywords : Nonlinear damping, Negative initial energy, Noncontinuation,
blow up, ¯nite time.
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1 Introduction

In this paper we are concerned with the following initial boundary value problem
.

utt ¡¢u+ autjutjm¡2 = bujujp¡2; x 2 ­; t > 0
u(x; t) = 0; x 2 @­ ; t ¸ 0

u(x; 0) = u0(x); ut(x; 0) = u1(x); x 2 ­;
(1.1)

where a; b > 0; p; m > 2; and ­ is a a bounded domain of IRn (n ¸ 1), with a smooth
boundary @­: For b = 0, it is well known that the damping term autjutjm¡2 assures
global existence for arbitrary initial data ( see [3], [5] ). If a = 0 then the source term
bujujp¡2 causes ¯nite time blow up of solutions with negative initial energy (see [1],
[4], [6], [7] ).
The interaction between the damping and the source terms was ¯rst considered

by Levine [6], [7] in the linear damping case (m = 2). He showed that solutions with
negative initial energy blow up in ¯nite time. Recently Georgiev and Todorova [2]
extended Levine's result to the nonlinear case (m > 2). In their work, the authors
introduced a di®erent method and determined suitable relations between m and p,
for which there is global existence or alternatively ¯nite time blow up. Precisely;
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they showed that solutions with negative energy continue to exist globally 'in time'
if m ¸ p and blow up in ¯nite time if p > m and the initial energy is su±ciently
negative.
This result has been lately generalized to an abstract setting and to unbounded

domains by Levine and Serrin [8] and Levine, Park, and Serrin [9]. In these papers,
the authors showed that no solution with negative energy can be extended on [0, 1)
if p > m and proved several noncontinuation theorems. This generalization allowed
them also to apply their result to quasilinear situations, of which problem (1.1) is a
particular case.
Vitillaro [10] combined the arguments in [2] and [8] to extend these results to

situations where the damping is nonlinear and the solution has positive initial energy.
In this work, we prove the same result of [2] without imposing the condition that

the initial energy is su±ciently negative. In other words, we show that any solution
of (1.1) with negative initial energy - however close to zero is - blows up in ¯nite time.
In addition to ommitting the condition of large 'negative' initial data, our technique
of proof is simpler than the ones in [2] and [8]. We ¯rst state a local result established
in [2].
Theorem 1.1. Suppose that m > 2; p > 2; and

p · 2
n¡ 1
n¡ 2 ; n ¸ 3: (1.2)

Assume further that
(u0; u1) 2 H1

0 (­) x L
2(­) (1.3)

Then the problem (1.1) has a unique local solution

u 2 C
³
[0; T ); H1

0(­)
´
; ut 2 C

³
[0; T ); L2(­)

´
\ Lm (­ x (0; T)) ; (1.4)

T is small :
Remark 1.1 The condition on p, in (1.2), is needed to establish the local existence
result (see [2]). In fact under this condition, the nonlinearity is Lipschitz from H 1(­)
to L2(­):

2 Main Result.

In this section we show that the solution (1.4) blows up in ¯nite time if
p > m and E(0) < 0, where

E(t) :=
1

2

Z

­
[u2t + jruj2](x; t)dx¡ b

p

Z

­
ju(x; t)jpdx: (2.1)

Lemma 2.1. Suppose that (1.2) holds. Then there exists a positive constant C > 1
depending on ­ only such that

jjujjsp · C
³
jjrujj22 + jjujjpp

´
(2.2)

2



for any u 2 H1
0(­) and 2 · s· p:

Proof. If jjujjp · 1 then jjujjsp · jjujj2p · C jjrujj22 by Sobolev embedding theorems.
If jjujjp > 1 then jjujjsp · jjujjpp: Therefore (2.2) follows.

We set
H(t) := ¡E(t)

and use, throughout this paper, C to denote a generic positive constant depending
on ­ only. As a result of (2.1) - (2.3), we have
Corollary 2.2. Let the assumptions of the lemma hold. Then we have

jjujjsp · C
³
jH(t)j+ jjutjj22 + jjujjpp

´
(2.3)

for any u 2 H1
0(­) and 2 · s· p:

Theorem 2.3. Let the conditions of the theorem 1.1 be ful l̄led. Assume further that
p > m and

E(0) < 0: (2.4)

Then the solution (1.4) blows up in ¯nite time:
Remark 2.1. Note that contrary to [2], no condition on the size of the initial data
has been done. The blow up takes place for any initial data satisfying (2.4).
Proof.
We multiply equation (1.1) by ut and integrate over ­ to get

E 0(t) = ¡a
Z

­
jut(x; t)jmdx; (2.5)

for almost every t in [0; T ) since E 0(t) is absolutely continuous ( see [2] ); hence
H 0(t) ¸ 0: So we have

0 < H(0) ·H (t) · b

p
jjujjpp; (2.6)

for every t in [0; T), by virtue of (2.4). We then de¯ne

L(t) :=H1¡®(t) + "
Z

­
uut(x; t)dx (2.7)

for " small to be chosen later and

0 < ® · min

(
(p¡ 2)
2p

;
(p ¡m)
p(m¡ 1)

)
: (2.8)

By taking a derivative of (2.7) and using equation (1.1) we obtain

L0(t) := (1¡ ®)H¡®(t)H 0(t) + "
Z

­
[u2t ¡ jruj2](x; t)dx (2.9)

+"b
Z

­
ju(x; t)jpdx¡ a"

Z

­
jutjm¡2utu(x; t)dx:

We then exploit Young's inequality

XY · ±r

r
Xr +

±¡q

q
Y q; X; Y;¸ 0; 8± > 0; 1

r
+
1

q
= 1
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with r = m and q = m=(m¡ 1) to estimate the last term in (2.9) as follows

Z

­
jutjm¡1jujdx · ±m

m
jjujjmm +

m¡ 1
m

±¡m=(m¡1)jjutjjmm

which yields, by substitution in (2.9),

L0(t) ¸
·
(1¡ ®)H¡®(t)¡ m¡ 1

m
"±¡m=(m¡1)

¸
H 0(t) + "

Z

­
[u2t ¡ jruj2](x; t)dx

+"
·
pH(t) +

p

2

Z

­
[u2t + jruj2](x; t)dx

¸
¡ "a±

m

m
jjujjmm; 8± > 0: (2.10)

Of course (2.10) remains valid even if ± is time dependant since the integral is taken
over the x variable. Therefore by taking ± so that ±¡m=(m¡1) = kH¡®(t), for large k
to be speci¯ed later, and substituting in (2.10) we arrive at

L0(t) ¸
·
(1¡ ®) ¡ m ¡ 1

m
"k

¸
H¡®(t)H 0(t) + "(

p

2
+ 1)

Z

­
u2t(x; t)dx (2.11)

+"(
p

2
¡ 1)

Z

­
jruj2(x; t)dx+ "

"
pH(t) ¡ k1¡m

m
aH®(m¡1)(t)jjujjmm

#
:

By exploiting (2.6) and the inequality jjujjmm · C jjujjmp , we obtain

H®(m¡1)(t)jjujjmm ·
Ã
b

p

!®(m¡1)
C jjujjm+®p(m¡1)p ;

hence (2.11) yields

L0(t) ¸
·
(1¡ ®) ¡ m ¡ 1

m
"k

¸
H¡®(t)H 0(t) + "(

p

2
+ 1)

Z

­
u2t(x; t)dx (2.12)

+"(
p

2
¡ 1)

Z

­
jruj2(x; t)dx + "

2
4pH(t)¡ k1¡m

m
a

Ã
b

p

!®(m¡1)
Cjjujjm+®p(m¡1)p

3
5 :

We then use corollary 2.2 and (2.8), for s = m + ®p(m ¡ 1) · p; to deduce from
(2.12)

L0(t) ¸
·
(1¡ ®) ¡ m ¡ 1

m
"k

¸
H¡®(t)H 0(t) + "(

p

2
+ 1)

Z

­
u2t(x; t)dx (2.13)

+"(
p

2
¡ 1)

Z

­
jruj2(x; t)dx+ "

h
pH(t)¡ C1k1¡m

n
H(t) + jjutjj22 + jjujjpp

oi
;

where C1 = a
³
b
p

´®(m¡1)
C=m: By noting that

H(t) =
b

p
jjujjpp ¡ 1

2
jjutjj22 ¡ 1

2
jjrujj22
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and writing p = (p+ 2)=2 + (p¡ 2)=2, (2.13) yields

L0(t) ¸
·
(1¡ ®) ¡ m ¡ 1

m
"k

¸
H¡®(t)H 0(t) +

p¡ 2
4

jjrujj22 (2.14)

"

"
(
p +2

2
¡ C1k1¡m)H(t) + (

p ¡ 2
2p

b¡ C1k1¡m)jjujjpp + (
p +6

4
¡ C1k1¡m)jjutjj22

#

At this point, we choose k large enough so that the coe±cients of H(t); jjutjj22; and
jjujjpp in (2.14) are strictly positive; hence we get

L0(t) ¸
·
(1¡ ®)¡ m¡ 1

m
"k

¸
H¡®(t)H 0(t) + "°

h
H(t) + jjutjj22 + jjujjpp

i
; (2.15)

where ° > 0 is the minimum of these coe±cients. Once k is ¯xed (hence °), we pick
" small enough so that (1¡ ®) ¡ "k(m¡ 1)=m ¸ 0 and

L(0) = H1¡®(0) + "
Z

­
u0u1(x)dx > 0:

Therefore (2.15) takes the form

L0(t) ¸ °"
h
H(t) + jjutjj22 + jjujjpp

i
: (2.16)

Consequently we have
L(t) ¸ L(0) > 0; 8 t ¸ 0:

Next we would like to show that

L0(t) ¸ ¡L1=(1¡®)(t);8t ¸ 0; (2.17)

where ¡ is a positive constant depending on "° and C ( the constant of lemma 2.1).
Once (2.17) is established, we obtain in a standard way the ¯nite time blow up of
L(t); hence of u (see [1] for instance).
To prove (2.17), we ¯rst estime

j
Z

­
uut(x; t)dxj · jjujj2jjutjj2 · Cjjujjpjjutjj2

which implies

j
Z

­
uut(x; t)dxj1=(1¡®) · Cjjujj1=(1¡®)p jjutjj1=(1¡®)2 :

Again Young's inequality gives us

j
Z

­
uut(x; t)dxj1=(1¡®) · C

h
jjujj¹=(1¡®)p + jjutjjµ=(1¡®)2

i
; (2.18)

for 1=¹+1=µ = 1:We take µ = 2(1¡ ®); to get ¹=(1¡®) = 2=(1¡ 2®) · p by (2.8).
Therefore (2.18) becomes

j
Z

­
uut(x; t)dxj1=(1¡®) · C

h
jjujjsp + jjutjj22

i
;
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where s = 2=(1¡ 2®) · p: By using corollary 2.2 we obtain

j
Z

­
uut(x; t)dxj1=(1¡®) · C

h
H(t) + jjujjpp + jjutjj22

i
; 8t ¸ 0: (2.19)

Finally by noting that

L1=(1¡®)(t) =
µ
H1¡®(t) + "

Z

­
uut(x; t)dx

¶1=(1¡®)

· 21=(1¡®)
µ
H (t) + j

Z

­
uut(x; t)dxj1=(1¡®)

¶

and combining it with (2.16) and (2.19), the inequality (2.17) is established. This
completes the proof.
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