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Abstract

In this work, we consider a nonlinear hyperbolic system describing heat
propagation, where the heat ‡ux is given by Cattaneo’s law. We state the
global existence theorem, presented in [4], and establish a blow up result.
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1 Introduction
In the absence of deformation, heat propagation in one spatial dimension body is
governed by the following equation of balance of energy

et + qx = 0; (1.1)

where the internal energy e and the heat ‡ux q are functions of (x, t) and a subscript
denotes a partial derivative with respect to the relevant variable. In Fourier’s theory
of heat conduction, the internal energy depends on the absolute temperature only;
i.e.

e = ê(µ) (1.2)

whereas the heat ‡ux is given by the relation

q = ¡·(µ)µx: (1.3)
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As a consequence, the evolution of the heat ‡ux and the absolute temperature is
given by the system

q + ·(µ)µx = 0
qx + ê0(µ)µt = 0;

(1.4)

where · and ê0 are strictly positive functions characterizing the material in consid-
eration. In the case where ê0 and · are independent of µ, we get the familiar linear
heat equation

µt = kµxx; k =
·

ê0
: (1.5)

This equation provides a useful description of heat conduction under a large range
of conditions and predicts an in…nite speed of propagation; that is, any thermal
disturbance at one point has an instantaneous e¤ect elsewhere in the body. This is not
always the case. In fact, experiments showed that heat conduction in some dielectric
crystals at low temperatures is free of this paradox (in…nite speed propagation) and
disturbances which are almost entirely thermal may propagate in a …nite speed. This
phenomenon in dielectric crystals is called second sound.

These observations go back to 1948, when Cattaneo [2] proposed, in place of (1.3),
a new constitutive relation

¿ (µ)qt + q = ¡·(µ)µx; (1.6)

where ¿ and · are strictly positive functions depending on the absolute temperature.
With this relation, the internal energy given by (1.2) is no longer compatible with
the second law of thermodynamics. Coleman, Fabrizio, and Owen [3] showed in 1982
that, if (1.6) is adopted then compatibility with thermodynamics requires that (1.2)
be replaced by

e = ~e(µ; q) = a(µ) + b(µ)q2; (1.7)

where b is a function determined by ¿ and ·. In particular

b(µ) > 0: (1.8)

Thus (1.1), (1.6), and (1.7) combined yield the following system governing the evo-
lution of µ and q

qx+ (a0(µ) + b0(µ)q2)µt + 2b(µ)qqt = 0
¿(µ)qt + q + ·(µ)µx = 0:

(1.9)

Global existence and decay of classical solutions to the Cauchy problem, as well as to
some initial boundary value problems, have been established by Coleman, Hrusa, and
Owen [4]. In their paper, the authors used a classical energy argument to prove their
result. As they pointed out the method based on the nonlinear semigroup theory,
presented in [8] is applicable to their initial value problem. Concerning the formation
of singularities, Messaoudi [9] studied the following system

¿ (µ)qt = q + ·(µ)µx = 0
c(µ)µt + qx = 0

(1.10)
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and showed, under the same restrictions on ¿ , c and ·, that classical solutions to the
cauchy problem break down in …nite time if the initial data are chosen small in L1

norm with large enough derivatives.
In this article, we consider a system equivalent to (1.9) and show that, under the

same conditions on the initial data, a blow up result can be obtained. This work is
divided into two sections. In section two we state, without proof, a global existence
result. In section three we establish our main result.

2 Global existence
To derive the equations, we assume that ~e is a c1 function, at least, in a neighbourhood
V of (0; 0) and

a0(0) > 0; (2.1)

hence
~eµ(0; 0) > 0: (2.2)

Therefore, we can choose V so that

~eµ(µ; q) > 0; 8 (µ; q) 2 V: (2.3)

In this case, µ can be expressed in terms of (e; q); i.e.

µ = ~c(e; q): (2.4)

By combining (1.7) and (2.4), we easily arrive at

µx =
ex ¡ 2b(~c(e; q))qqx

a0(~c(e; q)) + b0(~c(e; q))q2
: (2.5)

Thus, by considering (1.1), (1.6), (2.4), (2.5), we get the system of equations governing
the evolution of e and q

¾(e; q)qt + ¹(e; q)q = ¡ex+ ¸(e; q)qqx (2.6)

et = ¡qx; x 2 IR; t ¸ 0; (2.7)

where

¾(»; ´) =
¿(~c(»; ´))(a0(~c(»; ´)) + b0(»; ´)´2)

·(~c(»; ´))

¹(»; ´) =
a0(~c(»; ´)) + b0(~c(»; ´)´2

·(~c(»; ´))
¸(»; ´) = 2b(~c(»; ´)):

(2.8)

We, thus, seek classical solutions to the system (2.6), (2.7) which satisfy the initial
conditions

e(x; 0) = e0(x); q(x; 0) = q0(x); x 2 IR: (2.9)
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Note that, by virtue of the assumptions on ¿ ; ·; a; b, the functions ¾; ¹ remain bounded
away from zero in some neighbourhood V of (0; 0); i.e.

¾(»; ´) ¸ ¾ > 0; ¹(»; ´) ¸ ¹ > 0; 8(»; ´) 2 V: (2.10)

Theorem 2.1. Assume that ¾; ¹; ¸ are c2 functions satisfying (2.10). Then there
exists a small positive constant ± such that for any e0; q0 in H 2(IR) satisfying

ke0k22 + kq0k22 < ±2; (2.11)

the initial value problem (2.6), (2.7), (2.9) possesses a unique global solution (e; q)
with

e; q 2
2\

i=0

Ci([0;+1);H2¡i(IR)) (2.12)

and
e(¢; t); ex(¢; t); et(¢; t); q(¢; t); qx(¢; t); qt(¢; t) ! 0 (2.13)

in L1(IR) and uniformly in IR as t ! +1.
Remark 2.1. For the proof, we refer the reader to [4].
Remark 2.2. By the Sobolev embedding theorem, the solution

e; q 2 C 1(IR£ [0;+1)); (2.14)

hence it is a classical solution.

3 Formation of Singularities
This section is devoted to the statement and the proof of our blow up result.To
achieve this goal, we rewrite the problem (2.6),(2.7),(2.9) in the following form

qt = ¡'(e; q)ex +2b(e; q)'(e; q)qqx ¡ Ã(e; q)q (3.1)

et = ¡qx; x 2 IR; t ¸ 0 (3.2)

e(x; 0) = e0(x); q(x; 0) = q0(x); x 2 IR: (3.3)

Note that, by virtue of the assumptions on ¿; ·, and a, we have

0 < Ã(»; ´) · Ã; 8(»; ´) 2 IR2
'(»; ´) ¸ ' > 0; 8 (»; ´) 2 B: (3.4)

where B is a ball in IR2 centered at (0; 0) and with a radius "0 to be chosen suitably.
Lemma Assume that '; b; Ã are C2 functions satisfying (3.4). Then for any " > 0,
there exists ± > 0 such that for any initial data e0; q0 in H2(IR) obeying

je0(x)j < ±; jq0(x)j < ±; 8 x 2 IR; (3.5)

the solution of (3.1) - (3.3) satis…es

je(x; t)j < "; jq(x; t)j < "; 8 x 2 IR; t ¸ 0: (3.6)
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Proof. To carry out the proof, we de…ne

r(x; t) := e(x; t) +
Z q(x;t)

0
®(e(x; t); »)d»

s(x; t) := e(x; t) +
Z q(x;t)

0
¯(e(x; t); »)d»

(3.7)

where ® and ¯ are C 1 functions satisfying the linear problems :

®y(y; z)¡ °(y; z)®z(y; z) = °z(y; z)®(y; z)
®(y; 0) =

1
q
'(y; 0)

> 0; (y; z) 2 B (3.8)

and
¯y(y; z) + ½(y; z)¯z(y; z) = ¡½z(y; z)¯(y; z)
¯(y; 0) =

1
q
'(y; 0)

> 0; (y; z) 2 B; (3.9)

where
½ :=

q
' + (b'q)2 ¡ b'q

° :=
q
' + (b'q)2 + b'q:

(3.10)

The problems (3.8), (3.9) are …rst order linear. The solution can be obtained, at least,
in a neighbourhood of (0,0) by using the classical method of characteristics (see e.g.
[1], [5] ). Also by using (3.4), we can choose "0 <" such that

0 < ® · ®(y; z) · ®
0 < ® · ¯(y; z) · ¯ (3.11)

and
½(y; z) ¸ ½ > 0; °(y; z) ¸ ½; (3.12)

for any (y; z) 2 B. We then introduce the di¤erential operators

@+t :=
@

@t
+ ½(e; q)

@

@x

@¡t :=
@

@t
¡ °(e; q) @

@x
:

(3.13)

By noting that ®; ¯ satisfy the integral equations

1 +
Z z

0
®y(y; »)d» = °(y; z)®(y; z)

1¡
Z z

0
¯y(y; »)d» = ½(y; z)¯(y; z);

(3.14)

direct calculations then yield

@+t r = ¡Ã(e; q)q; (3.15)

@¡t s = ¡Ã(e; q)q: (3.16)
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To this end, we de…ne the nonnegative Lipshitz functions

R(t) := max
x

jr(x; t)j; S(t) := max
x

js(x; t)j; t 2 [0; T): (3.17)

The maxima in (3.17) are attained since r and s die at in…nity. Thus for any t 2 [0; T),
there exist x̂; ·x 2 IR such that

R(t) = jr(x̂; t)j; (3.18)

S(t) = js(·x; t)j: (3.19)

Also by the de…nition of R and S , we have

R(t¡ h) ¸ jr(x̂¡ ½(e(x̂; t); q(x̂; t))h; t¡ h)j; (3.20)

S(t¡ h) ¸ jr(·x+ h°(e(·x; t); q(·x; t)); t¡ h)j; (3.21)

for any h 2 (0; t), hence by subtracting (3.20) from (3.18) and (3.21) from (3.19),
dividing by h, and letting h go to zero, we get

_R(t) · j@+t r(x̂; t)j · Ãjq(x̂; t)j;
_S(t) · j@¡t r(·x; t)j · Ãjq(·x; t)j; (3.22)

for almost each t in [0; T ): We then use (3.7) and (3.12) to arrive at

jq(x; t)j · 1

®
[R(t) + S(t)] (3.23)

whenever (e; q) remains in B. Therefore, combining (3.22) and (3.23), we obtain

d

dt
(R(t) + S(t)) · k(R(t) +S(t)); k =

2Ã

®
(3.24)

for almost each t and whenever (e; q) 2 B. A straightforward integration, using
Gronwall’s inequality, leads to

(R(t) + S(t)) · (R(0) + S(0))ekT (3.25)

for any t, provided that (e,q) 2 B. We now use (3.7) to majorize e and q as follows

jq(x; t)j · R(t) +S(t)

2®

je(x; t)j · (2®+ ®)R(t) + ®S(t)

2®
;

(3.26)

hence, by virtue of (3.25) and (3.26), we have

jq(x; t)j · (R(0) + S(0))ekT

2®

je(x; t)j · (2® + ®)(R(0) + S(0))ekT

2®
;

(3.27)
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whenever (e(x; t); q(x; t)) 2 B. We then choose ± > 0 so that

(1 + 2®+ ®)(R(0) + S(0))ekT

2®
<
"0
2

(3.28)

Therefore we conclude, from (3.27) and (3.28), that if (e; q) 2 B (i.e. jej < "0; jqj <
"0) then (e; q) satis…es, in fact,

je(x; t)j< "0
2
; jq(x; t)j < "0

2
: (3.29)

Consequently we arrive, by continuity, at

je(x; t)j < "0 < "; jq(x; t)j < "0 < "; 8 t 2 [0; T): (3.30)

This completes the proof of the lemma.
Theorem 3.1. Let '; b; and Ã be as in the lemma. Assume further that

'e(0; 0) > j
q
'(0; 0) 'q(0; 0) ¡ 2b(0; 0)'2(0; 0) j: (3.31)

Then we can choose initial data e0; q0 2 H2(IR) such that the derivatives of the
solution (e; q) blow up in …nite time.
Remark 3.1. If b ´ 0 and ' is depending on e only then the problem (3.1) – (3.3),
as well as the hypothesis (3.31), are reduced to the problem (2.15) of [ 9].
Proof. We take an x-partial derivative of (3.15) to get

(@+t r)x = @
+
t rx+ ½xrx = ¡(Ã(e; q)q)x; (3.32)

which implies
@+t rx = ¡½xrx ¡ (Ã(e; q)q)x

= ¡(½eex+ ½qqx)rx ¡ (Ã(e; q)q)x: (3.33)

We then use

ex =
¯rx+ ®sx
®¯(° + ½)

qx =
½°rx ¡ ®°sx
®¯(° + ½)

(3.34)

to obtain
@+t rx = ¡ ½e + ½½q

®(½+ °)
r2x ¡ ½e ¡ °½q

¯(° + ½)
sxrx ¡ (Ã(e;q)q)x: (3.35)

We now set
w :=Hrx; (3.36)

where H is a C 1 solution, at least in a neighbourhood of (0,0), of the linear problem

Hy(y; z) + °(y; z)Hz =
½y ¡ °½z
½+ °

H(y; z)

H (y; 0) =
q
'(y; 0):

(3.37)
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By substituting in (3.35) we get

@+t w = ¡ ½e+ ½½q
®H(½ + °)

w2 ¡ qÃHq
H

w ¡H(Ã(e; q)q)x: (3.38)

By letting u = ¡w, (3.38) becomes

@+t u =
½e + ½½q
®H(½+ °)

u2¡ qÃHq
H

u+H(Ã(e; q)q)x: (3.39)

We also take an x-partial derivative of (3.16) and use (3.34) to obtain, by similar
computations,

@¡t sx =
°e ¡ °°q
¯(½ + °)

s2x+
°e + ½°q
®(° + ½)

rxsx ¡ (Ã(e; q)q)x: (3.40)

We also set
v := Msx; (3.41)

where M is a C 1 solution, at least in a neighbourhood of (0,0), of the linear problem

My(y; z) + ½(y; z)Mz(y; z) =
°y + ½°z
° + ½

M(y; z)

M (y; 0) =
q
'(y; 0):

(3.42)

By substituting in (3.40), we get

@¡t v =
°e ¡ °°q
M¯(° + ½)

v2 +
qÃMq

M
v ¡M(Ã(e;q)q)x: (3.43)

We note that the last terms in (3.39) and (3.43) involve only a ‘linear’ combination
of ex and qx which can be expressed in terms of u and v. Therefore (3.39) and (3.43)
take the forms

@+t u =
½e+ ½½q
®H(½ + °)

u2 + F1(e; q)u+ F2(e; q)v (3.44)

@¡t u =
°e ¡ °°q
¯M (½+ °)

v2 +G1(e; q)u+ G2(e; q)v: (3.45)

As in [6] and [7], we de…ne the nonnegative functions

U(t) := max
½
max
x
u(x; t); 0

¾

V (t) := max
½
max
x
v(x; t); 0

¾
:

(3.46)

We …x t > 0 with U(t) > 0 and/or V (t) > 0 and choose x̂; ·x 2 IR such that

U(t) = u(x̂; t) and/or V (t) = v(·x; t): (3.47)
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For every h 2 (0; T ¡ t) we have

U(t + h) ¸ u(x̂ + h½(e(x̂; t); q(x̂; t)); t+ h)
V (t+ h) ¸ u(·x¡ h°(e(·x; t); q(·x; t)); t+ h): (3.48)

We subtract (3.47) from (3.48), divide by h, and let h go to zero to obtain

D+U (t) ¸ @+t u(x̂; t) and/or D+V (t) ¸ @¡t v(·x; t): (3.49)

By noting that
³
½e+ ½½q

´
(0; 0) =

('e+ ''q ¡ 2b'2)(0; 0)
2
q
'(0; 0)

³
°e+ °°q

´
(0; 0) =

('e ¡ ''q + 2b'2)(0; 0)
2
q
'(0; 0)

(3.50)

and by virtue of (3.31), we can choose ± so small that H and M remain strictly
positive and

°e ¡ °°q
M¯(° + ½)

¸ 2m;
½e + ½½q
H®(½+ °)

¸ 2m; (3.51)

for m a positive constant. Therefore, combining all inequalities above, we arrive at
the estimate

D+(U(t) + V (t)) ¸ 2m
³
U2(t) + V 2(t)

´
¡K(U(t) + V (t)); (3.52)

where K is an upper bound for jF1j+ jG1j and jF2j+ jG2j. By setting

W := U ¡ V (3.53)

the estimate (3.52) takes the form

d

dt
W (t) ¸ mW2(t) ¡KW (t) (3.54)

for almost every t in the interval of existence of the solution. We choose initial data
small enough in L1 norm with derivatives such that

u(x; 0) = ¡®0H0 (q00 + °0e00) (x)
v(x; 0) = ¡¯0M0 (q

0
0¡ ½0e00) (x)

(3.55)

are large enough to make W in (3.54) blow up in …nite time.
Acknowledgement The author would like to thank KFUPM for its sincere support.
References

1. Carrier, G.F., Partial Di¤erential Equations Theory and Techniques, Academic
Press Inc., 1976.

2. Cattaneo, C., Sulla conduzione del calore, Atti Sem. Math. Fis Univ. Modena
3, 83–101, (1948).

9



3. Coleman, B.D., M. Fabrizio, and D.R. Owen, On the thermodynamics of second
sound in dielectric crystals, Arch. Rational Mech. Analysis 80, 135–158, (1982).

4. Coleman, B.D., W.J. Hrusa, and D.R. Owen, Stability of equilibrium for a
nonlinear hyperbolic system describing heat propagation by second sound in
solids, Arch. Rational Mech. Anal. 94, 267–289, (1986).

5. Copson, E.T., Partial Di¤erential Equations, Cambridge UniversityPress, 1975.

6. Dafermos, C.M. and L. Hsiao, Development of singularities in the solutions of
the equations of nonlinear thermoelasticity, Q. appl. Math. 44(1986), 463 -
474.

7. Hrusa, W.J., and S.A.Messaoudi, On formation of singularities in one-dimensional
nonlinear thermoelasticity, Arch. Rational Mech. Anal.111 (1990), 135–151.

8. Kato, T., The Cauchy problem for quasilinear symmetric hyperbolic systems,
Arch. Rational Mech. Anal. 58, (1975),181–205.

9. Messaoudi, S.A., Formation of singularities in heat propagation guided by sec-
ond sound, J.D.E. 130(1996), 92–99.

10


