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1 Our problem:

utt(t)+Au(t)−

∫ t

0

g(t−s)Au(s)ds+f(u) = 0, t > 0

u(0) = u0 ∈ V, ut(0) = u1 ∈ H, (1)

where A : V −→ V ′ is a ‘‘differential’’ operator.

Hypotheses:

(H1) There exixts an operator B : V −→ H such that

< Au, v >V ′×V=< Bu,Bv >H×H (2)

(H2) g : IR+ → IR+ is a differentiable function satis-
fying

g(0) > 0, 1−

∞∫
0

g(s)ds = l > 0 (3)

g′(t) ≤ −ξgp(t), t ≥ 0, 1 ≤ p <
3

2
. (4)
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(H3) There exists a constant Cp > 0 such that

||v||2 ≤ Cp||Bv||2, ∀v ∈ V, (5)

where ||.|| is the norm in H.
(H4) f : V → H such that

||f(v)|| ≤ Cp||Bv||α, ∀v ∈ V, α ≥ 1

(H5) There exists F : V → IR+ satisfying

d

dt
F (u(t)) = < f(u(t)), ut >

F (u(t))− < f(u(t)), u >≤ 0

Definition: By a weak solution of (1), we mean a func-
tion

u ∈ C([0, T );V ) ∩ C1([0, T );H)

satisfying, for almost every t ≥ 0,

d

dt
< ut(t), v > + < Bu(t), Bv >

+ < f(u(t)), v > −

∫ t

0

g(t− s) < Bu(s), Bv > ds
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+ < f(u(t)), v >= 0, ∀v ∈ V

u(0) = u0 ∈ V, ut(0) = u1 ∈ H

The energy

E(t) =
1

2


1−

t∫
0

g(s)ds


 ||Bu(t)||2 (6)

+
1

2
||ut||

2 +
1

2
(g ◦Bu)(t) + F (u(t)),

where

(g ◦ v)(t) =

t∫
0

g(t− τ )||v(t)− v(τ )||2dτ (7)

Remark. Condition p < 3/2 is made so that∫ ∞

0

g2−p(s)ds < ∞.
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2 Decay of solutions
Let

L(t) := E(t) + ε1Ψ(t) + ε2χ(t), (8)
ε1, ε2 > 0 and
Ψ(t) : =< u, ut >H×H (9)

χ(t) : = − < ut,

t∫
0

g(t− τ )(u(t)− u(τ ))dτ >H×H .

Lemma 2.1 For r > 1 and 0 < θ < 1, we have

t∫
0

g(t−s)||w(s)||2ds ≤




t∫
0

g1−θ(t− s)||w(s)||2ds




1/r

×




t∫
0

g(r−1+θ)/(r−1)(t− s)||w(s)||2ds




r/(r−1)

Proof. It suffice to note that
t∫

0

g(t− s)||w(s)||2ds =

t∫
0

g(1−θ)/r(t−s)||w(s)||2/rg(r−1+θ)/r(t−s)||w(s)||2(r−1)/rds

and apply Holder’s inequality.
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Lemma 2.2. Let v(t) be such that Bv ∈ L∞((0, T );H)
and g be a continuous function on [0, T ] and suppose
that 0 < θ < 1 and p > 1. Then, there exists a con-
stant C > 0 such that

t∫
0

g(t− s)||Bv(t)−Bv(s)||2ds ≤

C


 sup

0<s<T
||Bv(s)||2

t∫
0

g1−θ(s)ds




p−1

p−1+θ

.

×




t∫
0

gp(t− s)||Bv(t)−Bv(s)||2ds




θ
p−1+θ

Proof. By using lemma 2.1 with
r = (p− 1 + θ)/(p− 1),

we obtain

t∫
0

g(t− s)||Bv(t)−Bv(s)||2ds ≤ (10)




t∫
0

g1−θ(t− s)||Bv(t)−Bv(s)||2ds




p−1

p−1+θ
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×




t∫
0

gp(t− s)||Bv(t)−Bv(s)||2ds




θ
p−1+θ

It is easy to see that
t∫

0

g1−θ(t− s)||Bv(t)−Bv(s)||2ds ≤

C sup
0<s<T

||Bv(s)||2
t∫

0

g1−θ(s)ds (11)

By combining (10) and (11), the proof of the lemma is
complete.

Lemma 2.3. Let v(t) be such that Bv ∈ L∞((0, T );H)
and g be a continuous function on [0, T ] and suppose
that p > 1. Then, there exists a constant C > 0 such
that

t∫
0

g(t− s)||Bv(t)−Bv(s)||2ds ≤ (12)
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C


t||Bv(t)||2 +

t∫
0

||Bv(s)||2ds




(p−1)/p

×




t∫
0

gp(t− s)||Bv(t)−Bv(s)||2ds




1/p

.

Proof. We use (10), for θ = 1 to arrive at

t∫
0

g(t− s)||Bv(t)−Bv(s)||2ds ≤




t∫
0

||Bv(t)−Bv(s)||2ds




(p−1)/p

×




t∫
0

gp(t− s)||Bv(t)−Bv(s)||2ds




1/p

.

It suffices to note that

t∫
0

||Bv(t)−Bv(s)||2ds =
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t||Bv(t)||2 +

t∫
0

||Bv(s)||2ds

to obtain (12). This completes the proof.

Lemma 2.4 If u is the solution of (1) then the energy
satisfies

E ′(t) =
1

2
(g′ ◦Bu)(t) + g(t)||Bu(t)||2

≤
1

2
(g′ ◦Bu)(t) ≤ 0. (13)

Proof. By multiplying ’’scalarly’’ equation (1) by ut
and using (2)-(4) and some manipulations, we obtain
(13).

Lemma 2.5. For ε1 and ε2 small enough, we have
α1L(t) ≤ E(t) ≤ α2L(t), (14)

holds for two positive constants α1 and α2.

Proof. Straightforward computations, using (2), (5),
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lead to

L(t) ≤ E(t) + (ε1/2) ||ut||
2 + (ε1/2) ||u||

2

+(ε2/2) ||ut||
2 + (ε2/2) ||

t∫
0

g(t− τ )(u(t)− u(τ ))dτ ||2.

(15)
By using

||
t∫
0

g(t− τ )(u(t)− u(τ ))dτ ||

≤
t∫
0

g(t− τ )||(u(t)− u(τ ))||dτ

≤

(
t∫
0

(√
g(t− τ )

)2

||(u(t)− u(τ ))||2dτ

)1/2

×

(
t∫
0

(√
g(t− τ )

)2

dτ

)1/2

=

(
t∫
0

g(t− τ )||(u(t)− u(τ ))||2dτ

)1/2( t∫
0

g(t− τ )dτ

)1/2

≤ ((1− l)(g ◦Bu)(t))1/2 ,
(16)

we arrive at
L(t) ≤ E(t) + [(ε1 + ε2)/2] ||ut||

2 + (ε1/2)Cp||Bu||2

+(ε2/2)Cp(1− l)(g ◦Bu)(t) ≤ α2E(t).
(17)
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Similarly we have
L(t) ≥

(
1
2 − [(ε1 + ε2) /2]

)
||ut||

2

+
(
1
2 − (ε1/2)Cp

)
||Bu(t)||2 + F (u(t))

+[12 − (ε2/2)Cp(1− l)](g ◦Bu)(t) ≥ α1E(t)
(18)

for ε1 and ε1 small enough.

Lemma 2.6 Under the asumptions (2)-(5), the func-
tional

Ψ(t) :=< u, ut >H×H

satisfies, along the solution of (1)

Ψ′(t) ≤ ||ut||
2 −

l

2
||Bu||2 − F (u) (19)

+
1

l




t∫
0

g2−p(τ )dτ


 (gp ◦Bu)(t).

Proof By using equation (1), we see:

Ψ′(t) = < u, utt >H×H +||ut||
2

= ||ut||
2 − ||Bu||2− < u, f(u) >H×H (20)
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+ < Bu,

t∫
0

g(t− τ )Bu(τ )dτ >

≤ ||ut||
2 − ||Bu||2 − F (u)

+ < Bu,

t∫
0

g(t− τ )Bu(τ )dτ >H×H

Estimate the forth term in the RS of (20) as follows:

< Bu,

t∫
0

g(t− τ )Bu(τ )dτ >H×H

≤
1

2
||Bu||2 +

1

2
||

t∫
0

g(t− τ )Bu(τ )dτ ||2

≤
1

2
||Bu||2 + (21)

1

2
||

t∫
0

g(t− τ )B(u(τ )− u(t) + u(t))dτ ||2

Use Cauchy-Schwarz, Young’s inequalities, and
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t∫
0

g(τ )dτ ≤

∞∫
0

g(τ )dτ = 1− l,

to obtain, for any η > 0,

||
t∫
0

g(t− τ )B(u(τ )− u(t) + u(t))dτ ||2

≤ ||
t∫
0

g(t− τ )(Bu(τ )−Bu(t))dτ ||2

+||
t∫
0

g(t− τ )Bu(t)dτ ||2

+2 <
t∫
0

g(t− τ )B(u(τ )− u(t))dτ,

t∫
0

g(t− τ )Bu(t)dτ >

≤ (1 + η)||
t∫
0

g(t− τ )Bu(t)dτ ||2

+(1 + 1
η)||

t∫
0

g(t− τ )(Bu(τ )−Bu(t))dτ ||2

(22)
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Cauchy-Schwarz inequality again =⇒

||

t∫
0

g(t− τ )(B(u(τ )− u(t))dτ ||2

=




t∫
0

g(t− τ )||Bu(τ )−Bu(t)||dτ




2

(23)

=




t∫
0

g1−p/2gp/2(t− τ )||B(u(τ )− u(t))||dτ




2

≤




t∫
0

g2−p(τ )dτ




t∫
0

gp(t−τ )||B(u(τ )−u(t))||2dτ

Thus (22) becomes

||
t∫
0

g(t− τ )B(u(τ )− u(t) + u(t))dτ ||2

≤ (1 + η)

(
t∫
0

g(t− τ )dτ

)2

||Bu(t)||2

+(1 + 1
η)

(
t∫
0

g2−p(τ )dτ

)
(gp ◦Bu)(t)

≤ (1 + η)(1− l)2||Bu(t)||2

+(1 + 1
η)

(
t∫
0

g2−p(τ )dτ

)
(gp ◦Bu)(t).

(24)
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Combining (20)-(24) =⇒

Ψ′(t) ≤ ||ut||
2 +

1

2

[
−1 + (1 + η)(1− l)2

]
||Bu||2

(25)

+(1 +
1

η
)




t∫
0

g2−p(τ )dτ


 (gp ◦Bu)(t)− F (u).

Choose η = l/(1− l) so proof is completed.
Lemma 2.7 Under the asumptions (2)-(5), the func-
tional

χ(t) := − < ut,

t∫
0

g(t− τ )(u(t)− u(τ ))dτ >

satisfies, along the solution of (1)

χ′(t) ≤ δ{1 + 2(1− l)2 + (
E(0)

l
)α−1}||Bu||2

+{2δ +
1

δ
}(

t∫
0

g2−p(τ )dτ )(gp ◦ ∇u)(t)

+
g(0)

4δ
Cp(−(g′ ◦Bu)(t) (26)

+{δ −

t∫
0

g(s)ds}||ut||
2, ∀δ > 0,
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Proof.

χ′(t) := − < utt,
t∫
0

g(t− τ )(u(t)− u(τ ))dτ >

− < ut,
t∫
0

g′(t− τ )(u(t)− u(τ ))dτ >

−

(
t∫
0

g(τ )dτ

)
||ut(t)||

2

= − < Au(t),
t∫
0

g(t− τ )(u(t)− u(τ ))dτ >

+ <
∫ t

0 g(t− s)Au(s)ds,
t∫
0

g(t− τ )(u(t)− u(τ ))dτ >

< −f(u),
t∫
0

g(t− τ )(u(t)− u(τ ))dτ >

− < ut,
t∫
0

g′(t− τ )(u(t)− u(τ ))dτ >

−

(
t∫
0

g(τ )dτ

)
||ut(t)||

2

All the terms are treated in a similar way except
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< −f(u),
t∫
0

g(t− τ )(u(t)− u(τ ))dτ >

≤ δ||f(u)||2 + 1
4δ||

t∫
0

g(t− τ )(u(t)− u(τ ))dτ ||2

≤ δC2
p ||Bu||2α + 1

4δ

(
t∫
0

g2−p(τ )dτ

)
(gp ◦Bu)(t)

≤ δC2
p(

E(0)
l )α−1||Bu||2 + 1

4δ

(
t∫
0

g2−p(τ )dτ

)
(gp ◦Bu)(t)

.
Theorem 2.8 Let (u0, u1) ∈ V ×H be given. Assume
that g satisfies (3) and (4). Then, for each t0 > 0,
there exist strictly positive constants K and k such
that the solution of (1) satisfies, for all t ≥ t0,

E(t) ≤ Ke−kt, p = 1 (27)
E(t) ≤ K(1 + t)−1/(p−1), p > 1.

Proof
Since g is positive, continuous, and g(0) > 0 then

for any t0 > 0 we have

t∫
0

g(s)ds ≥

t0∫
0

g(s)ds = g0 > 0, ∀t ≥ t0. (28)

Use of above lemmas =⇒
L′(t) ≤ − [ε2{g0 − δ} − ε1] ||ut||

2 − ε1F (u)
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−

[
ε1l

2
− ε2δ{1 + 2(1− l)2 + C2

p(
E(0)

l
)α−1}

]
||Bu||2

(29)

−ξ

(
1

2
− ε2

g(0)

4δ
Cp − [

ε1
l
+ ε2{2δ +

1

δ
}]

t∫
0

g2−p(τ )dτ


 (gp ◦Bu)(t)

At this point we choose δ so small that

g0 − δ > 1
2g0

2
l δ{1 + 2(1− l)2 + C2

p(
E(0)
l )α−1} < 1

4g0.

Whence δ is fixed, the choice of any two positive con-
stants ε1 and ε2 satisfying

1

4
g0ε2 < ε1 <

1

2
g0ε2 (30)

will make
k1 = ε2{g0 − δ} − ε1 > 0

k2 =
ε1l

2
− ε2δ{1 + 2(1− l)2 + C2

p(
E(0)

l
)α−1} > 0.

We then pick ε1 and ε2 so small that (11) and (30) re-
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main valid and
(
1

2
− ε2

g(0)

4δ
Cp − [

ε1
l
+ ε2{2δ +

1

δ
}]

∞∫
0

g2−p(τ )dτ


 > 0

Therefore, for all t ≥ t0. we have
(31)

L′(t) ≤ −β
[
||ut||

2 + ||Bu||2 + (gp ◦Bu)(t) + F (u)
]

Case 1. p = 1: We combine (6), (14) and (30) to get

L′(t) ≤ −β1E(t) ≤ −β1α1L(t) ∀t ≥ t0.(32)

A simple integration of (32) leads to

L(t) ≤ L(t0)e
β1α1t0e−βα1t, ∀t ≥ t0. (33)

which implies

E(t) ≤ α2L(t0)e
βα1t0e−βα1t = Ke−kt, ∀t ≥ t0.

(34)
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Case 2. p > 1:

Conditions (3) and (4) =⇒∫ ∞

0

g1−θ(τ )dτ < ∞, θ < 2− p,

so lemma 2.2 yields

(g ◦Bu)(t) ≤ C {(gp ◦Bu)(t)}θ/(p−1+θ) (35)

×

{(∫ ∞

0

g1−θ(τ )dτ

)
E(0)

}(p−1)/(p−1+θ)

Therefore we get, for σ > 1,

Eσ(t) ≤ CEσ−1(0)
(
||ut||

2 + ||Bu||2 + F (u)
)

+C {(g ◦Bu)(t)}σ (36)
≤ CEσ−1(0)

(
||ut||

2 + ||Bu||2 + F (u)
)

+C

{
E(0)

∫ ∞

0

g1−θ(τ )dτ

}σ(p−1)/(p−1+θ)

×{(gp ◦Bu)(t)}σθ/(p−1+θ) ,

where C is a generic positive constant. By choosing
θ = 1

2 and σ = 2p − 1 (hence σθ/(p − 1 + θ) = 1),
estimate (36) gives
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Eσ(t) ≤ C
{
||ut||

2 + ||Bu||22 + (gp ◦Bu)(t) + F (u)
}

(37)

Combining (14), (31) and (37), we obtain

L′(t) ≤ −β2E
σ(t) ≤ −β2 (α1)

σ Lσ(t), ∀t ≥ t0,
(38)

where β2 > 0. Integration of (38) gives

L(t) ≤ C(1 + t)−1/(σ−1), ∀t ≥ t0. (39)

As a consequence of (39), we have

∫ ∞

0

L(t)dt + sup
t≥0

tL(t) < ∞. (40)

Using Lemma 3.3, we have

g ◦Bu ≤

C

[∫ ∞

0

‖Bu(s)‖2ds + sup
t
t‖Bu(t)‖2

]p−1

P

(gp◦Bu)1/p

≤ C

[∫ ∞

0

L(s)ds + tL(t)

](p−1)/p

(gp ◦ ∇u)1/p

≤ C(gp ◦ ∇u)1/p.
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So
gp ◦ ∇u ≥ C(g ◦ ∇u)p. (41)

So (31) becomes

L
′

(t) ≤ −C
[
||ut||

2 + ‖Bu(t)‖2 + (g ◦ ∇u)p(t) + F (u)
]
.

(42)

Also,
Ep(t) ≤ C

[
||ut||

2 + ‖Bu(t)‖2 + (g ◦ ∇u)p(t) + F (u)
]
.

(43)

Combining the last two inequalities and (14), we obtain

L′(t) ≤ −CLp(t), t ≥ t0. (44)

A simple integration of (44) yields

L(t) ≤ K(1 + t)−1/(p−1), t ≥ t0.

This completes the proof.

Remark . Estimates (27) also hold for all t ∈ [0, t0]
by virtue of continuity and boundedness of E .
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3 Applications:
1)Vector-valued Equation


utt(t) +Au(t)−
t∫
0

g(t− τ )Au(τ )dτ = 0, in (0,∞)

u(0) = u0 ∈ IRn, ut(0) = u1 ∈ IRn.
(45)

where A : IRn → IRn is a symmetric positive definite
matrix

u : IR+ → IRn is a one-variable vector-valued func-
tion

It is easy to verify that there exists a nonsingular sym-
metric matrix B : IRn → IRn such that

A = B2

Define

E(t) =
1

2
|u′(t)|2+

1

2
(1−

∫ t

0

g(s)ds)|Bu(t)|2+
1

2
g◦Bu(t)

where

g ◦Bu(t) =

∫ t

0

g(t− s)|Bu(t)−Bu(s)|2ds

Theorem 3.1: Under the condtions (3) and (4) on g,
the solution of (45) satisfies

E(t) ≤ Ke−kt, p = 1
23



E(t) ≤ K(1 + t)−1/(p−1), p > 1.

Proof. Take
H = V = IRn

equipped with the norm | | and use
Av.w = Bv.Bw, ∀v, w ∈ IRn

Also,
|u| = |B−1Bu| ≤ Cp|Bu|
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2) Wave Equation:



utt −∆u +
t∫
0

g(t− τ )∆u(τ )dτ

+|u|β−2u = 0, in Ω× (0,∞)
u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(46)

Ω ⊂ IRn (n ≥ 1) bounded with ∂Ω regular, g ≥ 0
satisfying (3) and (4), and

2 ≤ β ≤ 2(n− 1)/(n− 2), n > 2

β ≥ 2, n = 1, 2

In this problem, we take
H = L2(Ω), V = H1

0(Ω), A = −∆

It is well known that

< −∆u, v >=

∫
Ω

∇u.∇vdx, ∀u, v ∈ V

and, by Poincare, we have∫
Ω

u2dx ≤ Cp

∫
Ω

|∇u|2dx
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Also,

f(u) = |u|β−2u and F (u) =
1

β

∫
Ω

|u|β

which gives

F (u(t))− < f(u(t)), u >= (
1

β
− 1)

∫
Ω

|u|β ≤ 0

The energy is

E(t) : =
1

2


1−

t∫
0

g(s)ds


 ||∇u(t)||2

+
1

2
||ut||

2 +
1

2
(g ◦ ∇u)(t) +

1

β

∫
Ω

|u|βdx.

Theorem 3.2: Under the condtions (3) and (4) on g,
the solution of (46) satisfies

E(t) ≤ Ke−kt, p = 1

E(t) ≤ K(1 + t)−1/(p−1), p > 1.

.
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