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SUMMARY

In this paper, we consider the non-linear wave equation

utt −�ut − div(|∇u|m∇u) + a|ut |�ut = b|u|pu
a; b¿0, associated with initial and Dirichlet boundary conditions. Under suitable conditions on �, m,
and p, we give precise decay rates for the solution. In particular, we show that for m = 0, the decay
is exponential. This work improves the result by Yang (Math. Meth. Appl. Sci. 2002; 25:795–814).
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we are concerned with the following initial-boundary value problem:
⎧⎪⎪⎨
⎪⎪⎩

utt −�ut − div(|∇u|m∇u) + a|ut |�ut = b|u|pu; x∈�; t¿0
u(x; 0) = u0(x); ut(x; 0) = u1(x); x∈�
u(x; t) = 0; x∈ @�; t¿0

(1)

where a, b, �, m, p¿0 and � is a bounded domain of Rn (n¿1), with a smooth boundary @�.
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Equation (1) appears in the models of non-linear viscoelasticity and it can also be consid-
ered as a system governing the longitudinal motion of a viscoelastic con�guration obeying a
non-linear Voight model (see References [1–4]).
In the absence of the strong damping −�ut , Equation (1) becomes

utt − div(|∇u|m∇u) + a|ut |�ut = b|u|pu; x∈�; t¿0 (2)

For b=0, it is well known that the damping term assures global existence and decay of the so-
lution energy for arbitrary initial data (see References [5–7]). For a=0, the source term causes
�nite time blow up of solutions with negative initial energy if p¿m (see Reference [8]).
The interaction between the damping and the source terms was �rst considered by Levine

[9,10] in the linear damping case (� = m = 2). He showed that solutions with negative initial
energy blow up in �nite time. This result was later improved by Kalantarov and Ladyzhen-
skaya [11] to accommodate more situations. Georgiev and Todorova [12] extended Levine’s
result to the non-linear damping case (�¿2). In their work, the authors considered (2) with
m = 2 and introduced a method di�erent than the one known as the concavity method. They
determined suitable relations between � and p, for which there is global existence or al-
ternatively �nite time blow up. Precisely; they showed that solutions with negative energy
continue to exist globally ‘in time’ if �¿p and blow up in �nite time if p¿� and the initial
energy is su�ciently negative. This result was later generalized to an abstract setting and to
unbounded domains by Levine and Serrin [13] and Levine, et al. [14]. In these papers, the
authors showed that no solution with negative energy can be extended on [0;∞) if p¿� and
proved several non-continuation theorems. This generalization allowed them also to apply their
result to quasilinear situations (m¿2), of which the problem in Reference [12] is a particular
case. Vitillaro [15] extended these results to situations where the damping is non-linear and
the solution has positive initial energy. Similar results have also been established by Todorova
[16,17] for di�erent Cauchy problems.
In Reference [4], Zhijian studied a similar problem to (1) and proved a blow up result under

the condition p¿max{�;m} and the initial energy is su�ciently negative (see condition ii,
Theorem 2.1 of Reference [4]). In fact this condition made it clear that there exists a certain
relation between the blow-up time and |�| (see Remark 2 of Reference [4]). Messaoudi and
Said-Houari [18] improved Zhijian result and showed that the blow up takes place for negative
initial data only regardless of the size of �. In a recent work, Yang [1] also considered

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

utt −�ut −
∑i=n

i=1
@
@xi
�i(uxi) + f(ut) = g(u); (x; t)∈�× (0;+∞)

u(:; t)|@� = 0; t¿ 0

u(x; 0) = u0(x); ut(x; 0) = u1(x); x∈�

(3)

where �i (i = 1; : : : ; n), f and g are non-linear function behaving like |s|ms, |s|�s, and |s|ps,
respectively. He combined the Galerkin method with the potential well technique and proved
a global existence result of weak solutions and a decay result of the form

‖ut(t)‖22 + ‖∇u(t)‖m+2m+2 + ‖u(t)‖p+2p+2 = O
(
t(2m+3)=(2m+4)

t + 1

)
as t → +∞
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In this work, we improve the result of Reference [1] by giving more precise decay rates.
In particular, we show that for m = 0, the decay is exponential. Our technique of proof relies
on the combination of the perturbed energy and the potential well methods.
For the sake of completeness we state, without proof, the global existence result of

Reference [1]. For this aim, we set

W = {v∈W 1; m+2
0 (�)\‖∇v‖m+2m+2 − b‖v‖p+2p+2¿0} ∪ {0}

We will also need the Sobolev embedding of W 1; m+2
0 (�) in Lq(�)

‖u‖q6C∗‖∇u‖m+2; q6
n(m+ 2)
n− (m+ 2) ; m+ 2¡n (4)

and

E0 =
1
2

∫
�
u21 dx +

1
m+ 2

∫
�

|∇u0|m+2 dx − 1
p+ 2

∫
�

|u0|p+2 dx

Proposition
Suppose that m; �¿ 0; and p¿m such that

max{�+ 2; p+ 2}6 n(m+ 2)
n− (m+ 2) ; m+ 2¡n (5)

and let (u0; u1)∈W×L2(�) be given and satisfying

� = bCp+2∗

(
(m+ 2)(p+ 2)

p−m E0

)(p−m)=(m+2)
¡1 (6)

Then problem (1) has a unique global solution:

u ∈ L∞([0;∞);W 1; m+2
0 (�))

ut ∈ L∞([0;∞);L2(�))∩L�+2(�× (0; T ))∩L2([0;∞);H 1
0 (�))

(7)

2. MAIN RESULT

In order to state and prove our main result we �rst introduce the following functionals:

I(t) = I(u(t)) = ‖∇u(t)‖m+2m+2 − b‖u(t)‖p+2p+2

J (t) = J (u(t)) =
1

m+ 2
‖∇u(t)‖m+2m+2 − b

p+ 2
‖u(t)‖p+2p+2

E(t) = E(u(t); ut(t)) = J (t) + 1
2‖ut(t)‖22

(8)

where we are using w(t) instead of w(:; t):

Remark 2.1
By multiplying Equation (1) by ut , integrating over �; and using integration by parts, we get

E′(t) = −(a‖ut(t)‖�+2�+2 + ‖∇ut(t)‖22)6 0 (9)
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for almost each t. Therefore,

E(t)6E0 ∀t¿ 0 (10)

Lemma 2.1
Suppose that m; �¿ 0, and p¿m such that (5) holds and let (u0; u1)∈W×L2(�) be given
and satisfying (6). Then u(t)∈W; for each t¿ 0:
Proof
Since I(u0)¿0 then there exists Tm¿0 such that I(u(t))¿ 0 for all t ∈ [0; Tm). This implies

J (t) =
1

m+ 2
‖∇u(t)‖m+2m+2 − b

p+ 2
‖u(t)‖p+2p+2

=
p−m

(m+ 2)(p+ 2)
‖∇u(t)‖m+2m+2 +

1
p+ 2

I(u(t))

¿
p−m

(m+ 2)(p+ 2)
‖∇u(t)‖m+2m+2 ∀t ∈ [0; Tm) (11)

hence

‖∇u(t)‖m+2m+26
(m+ 2)(p+ 2)

p−m J (t)6
(m+ 2)(p+ 2)

p−m E(t)

6
(m+ 2)(p+ 2)

p−m E0 ∀t ∈ [0; Tm) (12)

By exploiting (4)–(6) and (12), we easily arrive at

b‖u(t)‖p+2p+26 bCp+2∗ ‖∇u(t)‖p+2m+2 = bC
p+2
∗ ‖∇u(t)‖p−m

m+2 ‖∇u(t)‖m+2m+2

6 bCp+2∗

(
(m+ 2)(p+ 2)

p−m E0

)(p−m)=(m+2)
‖∇u(t)‖m+2m+2

= �‖∇u(t)‖m+2m+2¡‖∇u(t)‖m+2m+2 ∀t ∈ [0; Tm) (13)

hence

‖∇u(t)‖m+2m+2 − b‖u(t)‖p+2p+2¿0 ∀t ∈ [0; Tm)
This shows that u(t)∈W;∀t ∈ [0; Tm). By noting that

lim
t→Tm

bCp∗

(
2p
p− 2E(u(t); ut(t))

)(p−2)=2
6�

we easily repeat steps (11)–(13) to extend Tm to 2Tm. By continuing the procedure, the
assertion of the lemma is proved.
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Lemma 2.2
Suppose that (5) and (6) hold. Then for �¿m, we have

‖u(t)‖�+2�+26CE(t) (14)

for some constant C depending on �;m; p, and E0 only.

Proof
If � = m then (14) is trivial by virtue of (11) and (13).
If �¿m then

‖u(t)‖�+2�+26C�+2∗ ‖∇u(t)‖�+2m+26C
�+2
∗ ‖∇u(t)‖m+2m+2‖∇u(t)‖�−mm+2

6C�+2∗

(
(m+ 2)(p+ 2)

p−m E0

)(�−m)=(m+2) (m+ 2)(p+ 2)
p−m E(t) (15)

again holds by virtue of (4)–(6) and (12). Therefore, (14) is established.

Lemma 2.3
For � (bounded or unbounded), if v∈Lq(�)∩Lr(�), q¡r then v∈Ls(�); q6 s6 r. More-
over, there exist two constants c1 and c2 depending on q and r only such that

‖v‖ss6 c1‖v‖qq + c2‖v‖rr (16)

Proof
Since q6 s6 r then s = tq + (1 − t)r; 06 t6 1. So by Young’s inequality we have
|v|s6 c1|v|q + c2|v|r . Integrating over �, (16) is established.
Lemma 2.4
Under conditions (5), (6) and if �¿m=(m+ 2); the solution of (1) satis�es∫

�
|ut |�+1|u| dx6 �CE(t) + c(�){‖ut‖�+2�+2 + ‖∇ut‖22} (17)

where C is the constant in (14), � is any positive constant, and c(�) is a constant depending
on �, �, m, and p only.

Proof

(1) if �¿m then by Young’s inequality and (14) we have for any �¿0,

∫
�

|ut |�+1|u| dx6 �
∫
�

|u|�+2 dx + c(�)
∫
�

|ut |�+2 dx

6 �CE(t) + c(�){‖ut‖�+2�+2 + ‖∇ut‖22} (18)

(2) if m=(m+ 2)6 �¡m then we have∫
�

|ut |�+1|u| dx6 �
∫
�

|u|m+2 dx + c(�)
∫
�

|ut |(�+1)(m+2)=(m+1) dx (19)
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By noting that 26 (�+ 1)(m+ 2)=(m+ 1)¡�+ 2, we easily see, from (16), that
∫
�

|ut |(�+1)(m+2)=(m+1) dx6 c1
∫
�

|ut |2 dx + c2
∫
�

|ut |(�+2) dx

6 c3
∫
�

|∇ut |2 dx + c2
∫
�

|ut |(�+2) dx (20)

Combining (18) and (20) and recalling (12) the lemma is proved.

Theorem 2.5
Suppose that �¿m=(m+2)¿0, and p¿m such that (5) is satis�ed and let (u0; u1)∈W×L2(�)
be given and satisfying (6). Then there exist positive constants K and k such that, for all
t¿ 0, the global solution satis�es

E(t)6Ke−kt ; m = 0

E(t)6 (kt + K)−2=m; m¿0
(21)

Proof
We de�ne

F(t) := E(t) + ”
∫
�

(
u(t)ut(t) +

1
2
|∇u(t)|2

)
dx (22)

and note that for ” small enough, there exist two positive constants �1 and �2 such that

�1E(t)6F(t)6 �2(E(t))2=(m+2) (23)

In fact

F(t)6 E(t) +
”
2

∫
�

|ut(t)|2 dx + ”2
∫
�

|u(t)|2 dx + ”
2

∫
�

|∇u(t)|2 dx

6
(
1 +

”
2

)
E(t) + ”C(�)‖∇u‖2m+2

6
(
1 +

”
2

)
E(t) + ”C(�)(E(t))2=(m+2)

6
((
1 +

”
2

)
Em=(m+2)(t) + ”C(�)

)
(E(t))2=(m+2)

6
((
1 +

”
2

)
(E0)m=(m+2) + ”C(�)

)
(E(t))2=(m+2) = �2(E(t))2=(m+2)

and

F(t)¿ E(t)− ”
{
1
4�

∫
�

|ut(t)|2 dx + �
∫
�

|u(t)|2 dx
}
+
”
2

∫
�

|∇u(t)|2 dx

¿ E(t)− ”
4�

∫
�

|ut(t)|2 dx + ”
{
1
2

− C(�)�
} ∫

�
|∇u(t)|2 dx (24)
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By choosing � small enough (24) yields

F(t)¿ E(t)− ”
4�

∫
�

|ut(t)|2 dx

¿ J (t) +
(
1− ”

4�

) ∫
�

|ut(t)|2 dx

We then pick ”¿0 so small that

F(t)¿ J (t) + �1
∫
�

|ut(t)|2 dx¿ �1E(t)

We now di�erentiate (22) and use Equation (1), (9) and Poincar�e’s inequality, to obtain

F ′(t) = −(a‖ut(t)‖m+2m+2 + ‖∇ut(t)‖22) + ”
∫
�
[u2t (t)− |∇u(t)|m+2] dx

− a”
∫
�

|ut(t)|�ut(t)u(t) dx + ”b
∫
�

|u(t)|p dx

6−a
∫
�

|ut(t)|m+2 dx − [1− ”C(�)]‖∇ut(t)‖22 − ”
∫
�

|∇u(t)|m+2 dx

+ a”
∫
�

|ut(t)|�+1|u(t)| dx + ”b
∫
�

|u(t)|p dx (25)

We then use (8) and (13) to get

b
∫
�

|u(t)|p dx = �b
∫
�

|u(t)|p dx + (1− �)b
∫
�

|u(t)|p dx

6 �
(
p+ 2
2

∫
�
u2t (t) dx +

p+ 2
m+ 2

∫
�

|∇u(t)|m+2 dx − (p+ 2)E(t)
)

+(1− �)�
∫
�

|∇u(t)|m+2 dx; 0¡�¡1 (26)

By using Lemma 2.4 and (26), estimate (25) becomes

F ′(t)6−a
∫
�

|ut(t)|m+2 dx − [1− ”C(�)]‖∇ut(t)‖22 − ”
∫
�

|∇u(t)|m+2 dx

+ ”�
(
p+ 2
2

∫
�
u2t (t) dx +

p+ 2
m+ 2

∫
�

|∇u(t)|m+2 dx − (p+ 2)E(t)
)

+ ”(1− �)�
∫
�

|∇u(t)|m+2 dx + a”�CE(t) + a”c(�){‖ut‖�+2�+2 + ‖∇ut‖22}
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6−a[1− ”c(�)]‖ut‖�+2�+2 −
(
1− ”

[
C(�) + ac(�) + �

p+ 2
2

C(�)
])

‖∇ut‖22

− ”[�(p+ 2)− a�]E(t) + ”
(
(1− �)�+ �p+ 2

m+ 2
− 1

) ∫
�

|∇u(t)|m+2 dx (27)

By setting � = 1− �, (27) yields

F ′(t)6−
(
1− ”

[
C(�) + ac(�) + �

p+ 2
2

C(�)
])

‖∇ut‖22

− a[1− ”c(�)]‖ut‖�+2�+2 − ”[�(p+ 2)− a�]E(t)

+ ”
(
p−m
m+ 2

�− �(1− �)
) ∫

�
|∇u(t)|m+2 dx (28)

By using (12) and choosing � close to 1 so that (p − m)=(m + 2)� − �(1 − �)¿ 0, we
arrive at

F ′(t)6−a[1− ”c(�)]‖ut‖�+2�+2 −
(
1− ”

[
C(�) + ac(�) + �

p+ 2
2

C(�)
])

‖∇ut‖22

− ”[�(p+ 2)− a�]E(t) + ”
(
(p+ 2)�− (m+ 2)(p+ 2)

p−m �(1− �)
)
E(t)

6−a[1− ”c(�)]‖ut‖�+2�+2 −
(
1− ”

[
C(�) + ac(�) + �

p+ 2
2

C(�)
])

‖∇ut‖22

− ”
(
�
(m+ 2)(p+ 2)

p−m (1− �)− a�
)
E(t) (29)

At this point we choose � so small that �[((m+2)(p+2))=(p−m)](1− �)− a�¿0. Once �
is chosen we then pick ” so small that

1− ”c(�)¿ 0; 1− ”
[
C(�) + ac(�) + �

p+ 2
2

C(�)
]
¿ 0

and (23) remains valid: Consequently, (29) yields

F ′(t)6−”
(
�
(m+ 2)(p+ 2)

p−m (1− �)− a�
)
E(t)

6− ”
(�2)(m+2)=2

(
�
(m+ 2)(p+ 2)

p−m (1− �)− a�
)
F (m+2)=2(t) (30)
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We distinguish two cases.

(i) m = 0, then a simple integration of (30) leads to

E(t)6F(t)6F(0)e−kt ∀t¿ 0 (31)

where

k =
”

(�2)(m+2)=2

(
�
(m+ 2)(p+ 2)

p−m (1− �)− a�
)

(ii) m¿0, again a simple integration of (30) gives

E(t)6F(t)6 (kt + F−m=2(0))−2=m (32)

where

k =
”m

2(�2)(m+2)=2

(
�
(m+ 2)(p+ 2)

p−m (1− �)− a�
)

This completes the proof.

Remark 2.2
By using (8), (12), (13) and (21), we easily obtain, for all t¿ 0;

‖ut(t)‖22 + ‖∇u(t)‖m+2m+2 + ‖u(t)‖p+2p+26Ce−kt=2; m = 0

‖ut(t)‖22 + ‖∇u(t)‖m+2m+2 + ‖u(t)‖p+2p+26C(t + 1)−2=(m+2)m; m¿0
(33)

Remark 2.3
Theorem 2.5 remains valid if � = 0: In this case, we take

F(t) := E(t) + ”
∫
�

(
u(t)ut(t) +

1
2
|∇u(t)|2 + a

2
|u(t)|2

)
dx (34)

and the same proof works.

Remark 2.4
Note that, for the case m¿0, Theorem 2.5 gives no information about the rate of decay if
0¡�¡m=(m+ 2):
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