Global non-existence of solutions of a class of wave equations with non-linear damping and source terms

Salim A. Messaoudi\(^1,\ast,\dagger\) and Belkacem Said Houari\(^2,\ddagger\)

\(^1\)Mathematical Sciences Department, KFUPM, Dhahran 31261, Saudi Arabia
\(^2\)Université Badji Mokhtar, Département de Mathématiques, B.P. 12 Annaba 23000, Algerie

Communicated by H. A. Levine

SUMMARY

In this paper we consider the non-linear wave equation

\[u_{tt} - \Delta u_t - \text{div}(|\nabla u|^{\beta-2}\nabla u) - \text{div}(|\nabla u_t|^{\beta-2}\nabla u_t) + a|u_t|^{m-2}u_t = b|u|^{p-2}u \]

\(a, b > 0\), associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions on \(a, \beta, m, p\) and for negative initial energy, a global non-existence theorem. This improves a result by Yang (Math. Meth. Appl. Sci. 2002; 25:825–833), who requires that the initial energy be sufficiently negative and relates the global non-existence of solutions to the size of \(\Omega\). Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: non-linear damping; non-linear source; negative initial energy; global non-existence

1. INTRODUCTION

In this paper we are concerned with the following initial boundary value problem

\[
\begin{aligned}
&u_{tt} - \Delta u_t - \text{div}(|\nabla u|^{\beta-2}\nabla u) - \text{div}(|\nabla u_t|^{\beta-2}\nabla u_t) \\
&+ a|u_t|^{m-2}u_t = b|u|^{p-2}u, \quad x \in \Omega, \ t > 0 \\
&u(x, 0) = u_0(x), \ u_t(x, 0) = u_1(x), \ x \in \Omega \\
&u(x, t) = 0, \quad x \in \partial\Omega, \ t > 0
\end{aligned}
\]

(1)

where \(a, b > 0\), \(\alpha, \beta, m, p > 2\), and \(\Omega\) is a bounded domain of \(\mathbb{R}^n (n \geq 1)\), with a smooth boundary \(\partial\Omega\).

\ast Correspondence to: Salim A. Messaoudi, Mathematical Sciences Department, KFUPM, Dhahran 31261, Saudi Arabia.
\dagger E-mail: messaoud@kfupm.edu.sa
\ddagger E-mail: saidhouarib@yahoo.fr

Published online 8 June 2004
Copyright © 2004 John Wiley & Sons, Ltd.
Equation (1) appears in the models of non-linear viscoelasticity (see References [1–3]). It also can be considered as a system governing the longitudinal motion of a viscoelastic configuration obeying a non-linear Voight model (see References [3,4]).

In the absence of viscosity and strong damping, Equation (1) becomes

$$u_t - \text{div}(|\nabla u|^{p-2}\nabla u) + a|u|^{m-2}u_t = b|u|^{p-2}u, \quad x \in \Omega, \; t > 0$$

(2)

For $b = 0$, it is well known that the damping term assures global existence and decay of the solution energy for arbitrary initial data (see References [5,6]). Then, for $a = 0$ the source term causes finite time blow up of solutions with negative initial energy if $p > \alpha$ (see References [7,8]).

The interaction between the damping and the source terms was first considered by Levine [9,10] in the linear damping case ($\alpha = m = 2$). He showed that solutions with negative initial energy blow up in finite time. Georgiev and Todorova [11] extended Levine’s result to the non-linear damping case ($m > 2$). In their work, the authors considered (2) with $\alpha = 2$ and introduced a method different than the one known as the concavity method. They determined suitable relations between m and p, for which there is global existence or alternatively finite time blow up. Precisely; they showed that solutions with negative energy continue to exist globally ‘in time’ if $m > p$ and blow up in finite time if $p > m$ and the initial energy is sufficiently negative. This result was later generalized to an abstract setting and to unbounded domains by Levine and Serrin [12] and Levine et al. [13]. In these papers, the authors showed that no solution with negative energy can be extended on $[0, \infty)$ if $p > m$ and proved several non-continuation theorems. This generalization allowed them also to apply their result to quasilinear situations ($\alpha > 2$), of which the problem in Reference [11] is a particular case. Vitillaro [14] combined the arguments in References [11,12] to extend these results to situations where the damping is non-linear and the solution has positive initial energy. Similar results have also been established by Todorova [15,16] for different Cauchy problems.

In Reference [3], Yang studied (1) and proved a blow up result under the condition $p > \max\{\alpha, m\}$, $\alpha > \beta$, and the initial energy is sufficiently negative (see condition (ii) Theorem 2.1 of Reference [3]). In fact this condition made it clear that there exists a certain relation between the blow-up time and $|\Omega|$ (see Remark 2 of Reference [3]). We should note here that (1) corresponds to Equation (5) of [3] but the same conclusions hold for Equation (1) of the same paper, under suitable conditions, stated in Theorem 2.3 of [3].

In this work we show that any weak solution of (1), with negative initial energy, cannot exists for all time if $p > \max\{\alpha, m\}$, $\alpha > \beta$. Therefore, our result improves the one of [3]. Our technique of proof follows closely the argument of [17] with the modifications needed for our problem.

2. BLOW UP

In order to state and prove our result, we introduce the following function space

$$Z = L^\infty([0, T); W^{1,2}_0(\Omega)) \cap W^{1,\infty}([0, T); L^2(\Omega))$$

$$\cap W^{1,\beta}([0, T); W^{1,\beta}_0(\Omega)) \cap W^{1,m}([0, T); L^m(\Omega))$$
for $T > 0$ and the energy functional

$$E(t) = \frac{1}{2} \int_{\Omega} u_t^2 \, dx + \frac{1}{\alpha} \int_{\Omega} |\nabla u|^2 \, dx - \frac{b}{p} \int_{\Omega} |u|^p \, dx$$ \hspace{1cm} (3)

Theorem

Assume that $\alpha, \beta, m, p \geq 2$ such that $\beta < \alpha$, and $\max\{m, \alpha\} < p < r_\alpha$, where r_α is the Sobolev critical exponent of $W^{1,2}_0(\Omega)$. Assume further that

$$E(0) < 0$$ \hspace{1cm} (4)

Then the solution $u \in Z$, of (1), cannot exist for all time.

Remark 2.1

We remind that $r_\alpha = \frac{n}{\alpha - 1}$, if $n > \alpha$, $r_\alpha > \alpha$ if $n = \alpha$, and $r_\alpha = \infty$ if $n < \alpha$.

Remark 2.2

If the solution u is smooth enough then it blows up in finite time.

Proof

We suppose that the solution exists for all time and we reach to a contradiction. For this purpose we multiply Equation (1) by u_t and integrate over Ω to obtain

$$E'(t) = -\int_{\Omega} |\nabla u_t|^2 \, dx - \int_{\Omega} |\nabla u|^\beta \, dx - a \int_{\Omega} |u|^m \, dx \leq 0$$ \hspace{1cm} (5)

for any regular solution. This remains valid for $u \in Z$ by density argument. Hence $E(t) \leq E(0)$, $\forall t \geq 0$.

By setting $H(t) = -E(t)$, we get

$$0 < H(0) \leq H(t) \leq \frac{b}{p} \int_{\Omega} |u|^p \, dx, \hspace{1cm} \forall t \geq 0$$ \hspace{1cm} (6)

We then define

$$L(t) = H^{1-\sigma}(t) + \varepsilon \int_{\Omega} uu_t \, dx$$ \hspace{1cm} (7)

for ε small to be chosen later and

$$0 < \sigma \leq \min\left(\frac{\alpha - 2}{p}, \frac{\alpha - \beta}{p(\beta - 1)}, \frac{p - m}{p(m - 1)}, \frac{\alpha - 2}{2 \alpha}\right)$$ \hspace{1cm} (8)

Our goal is to show that $L(t)$ satisfies a differential inequality of the form

$$L'(t) \geq \xi L^q(t), \hspace{1cm} q > 1$$

This, of course, will lead to a blow up in finite time.

By taking a derivative of (7) we obtain

$$L'(t) = (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_{\Omega} u_t^2 \, dx + \varepsilon \int_{\Omega} uu_{tt} \, dx$$ \hspace{1cm} (9)
By using Equation (1), the estimate (9) gives

\[L'(t) = (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_\Omega u_t^2 \, dx \]

\[- \varepsilon \int_\Omega \nabla u \nabla u_t \, dx - \varepsilon \int_\Omega |\nabla u|^2 \, dx \]

\[- \varepsilon \int_\Omega |\nabla u_t|^{\beta-2} \nabla u_t \nabla u \, dx \]

\[- a \varepsilon \int_\Omega |u_t|^{m-2} u_t u \, dx + b \varepsilon \int_\Omega |u|^p \, dx \]

\[(10) \]

We then exploit Young’s inequality to get

\[\int_\Omega |u_t|^{m-2} u_t u \, dx \leq \frac{\delta^m}{m} \int_\Omega |u|^m \, dx + \frac{m-1}{m} \delta^{-m(m-1)} \int_\Omega |u_t|^m \, dx \]

\[(11) \]

\[\int_\Omega \nabla u \nabla u_t \, dx \leq \frac{1}{4\mu} \int_\Omega |\nabla u|^2 \, dx + \mu \int_\Omega |\nabla u_t|^2 \, dx \]

\[(12) \]

\[\int_\Omega |\nabla u_t|^{\beta-1} \nabla u \, dx \leq \frac{\lambda^\beta}{\beta - 1} \int_\Omega |\nabla u|^\beta \, dx + \frac{\beta - 1}{\beta} \lambda^{-\beta/(\beta-1)} \int_\Omega |\nabla u_t|^\beta \, dx \]

\[(13) \]

A substitution of (11)–(13) in (10) yields

\[L'(t) \geq (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_\Omega u_t^2 \, dx \]

\[- \frac{\varepsilon}{4\mu} \int_\Omega |\nabla u|^2 \, dx - \mu \varepsilon \int_\Omega |\nabla u_t|^2 \, dx \]

\[- \varepsilon \int_\Omega |\nabla u|^2 \, dx - \varepsilon \frac{\lambda^\beta}{\beta} \int_\Omega |\nabla u|^\beta \, dx \]

\[- \varepsilon \frac{\beta - 1}{\beta} \lambda^{-\beta/(\beta-1)} \int_\Omega |\nabla u_t|^\beta \, dx \]

\[+ b \varepsilon \int_\Omega |u|^p \, dx - a \varepsilon \frac{\delta^m}{m} \int_\Omega |u|^m \, dx \]

\[- a \varepsilon \frac{m-1}{m} \delta^{-m(m-1)} \int_\Omega |u_t|^m \, dx \]

\[(14) \]
Therefore by choosing δ, μ, λ so that

$$
\begin{align*}
\delta^{-m/(m-1)} &= M_1 H^{-\sigma}(t) \\
\mu &= M_2 H^{-\sigma}(t) \\
\lambda^{-\beta/(\beta-1)} &= M_3 H^{-\sigma}(t)
\end{align*}
$$

for $M_1, M_2,$ and M_3 to be specified later, and using (14) we arrive at

$$
L'(t) \geq (1 - \sigma) H^{-\sigma}(t) H'(t) + \epsilon \int_{\Omega} u_t^2 \, dx \\
- \frac{\epsilon}{4M_2} H^\sigma(t) \int_{\Omega} |\nabla u|^2 \, dx - \epsilon \int_{\Omega} |\nabla u|^\sigma \, dx \\
- \frac{\epsilon}{\beta} M_3^{-\frac{(\beta-1)}{\beta}} H^{\sigma(\beta-1)}(t) \int_{\Omega} |\nabla u|^{\beta} \, dx \\
- \frac{ae}{m} M_1^{-\frac{(m-1)}{m}} H^{\sigma(m-1)}(t) \int_{\Omega} |u|^m \, dx + b \epsilon \int_{\Omega} |u|^p \, dx \\
- \epsilon \left[M_2 \int_{\Omega} |\nabla u_t|^2 \, dx + \frac{\beta - 1}{\beta} M_3 \int_{\Omega} |\nabla u_t|^{\beta} \, dx \right] H^{-\sigma}(t)
\right]
$$

(15)

If $M = M_2 + (\beta - 1)M_3/\beta + (m-1)M_1/m$ then (15) takes the form

$$
L'(t) \geq \left((1 - \sigma) - \epsilon M \right) H^{-\sigma}(t) H'(t) + \epsilon \int_{\Omega} u_t^2 \, dx \\
- \frac{\epsilon}{4M_2} H^\sigma(t) \int_{\Omega} |\nabla u|^2 \, dx - \epsilon \int_{\Omega} |\nabla u|^\sigma \, dx \\
- \frac{\epsilon}{\beta} M_3^{-\frac{(\beta-1)}{\beta}} H^{\sigma(\beta-1)}(t) \int_{\Omega} |\nabla u|^{\beta} \, dx \\
- \frac{ae}{m} M_1^{-\frac{(m-1)}{m}} H^{\sigma(m-1)}(t) \int_{\Omega} |u|^m \, dx + b \epsilon \int_{\Omega} |u|^p \, dx
\right]
$$

(16)

We then use the embedding $L^p(\Omega) \hookrightarrow L^m(\Omega)$ and (6) to get

$$
H^{\sigma(m-1)}(t) \int_{\Omega} |u|^m \, dx \leq \left(\frac{b}{p} \right) ^{\sigma(m-1)} \left(\int_{\Omega} |u|^p \, dx \right) ^{\frac{m + \sigma p(m-1)}{p}}
$$

(17)
We also exploit the inequality
\[\int_{\Omega} |\nabla u|^2 \, dx \leq C \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{2/\alpha} \]
the embedding \(W_0^{1,\alpha}(\Omega) \rightarrow L^\beta(\Omega) \), and (4) to obtain
\[H^\alpha(t) \int_{\Omega} |\nabla u|^2 \, dx \leq C \left(\frac{b}{p} \right)^\sigma \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{\frac{ps+2}{2}} \] (18)
Since \(\alpha > \beta \) we have
\[\int_{\Omega} |\nabla u|^\beta \, dx \leq C \left(\int_{\Omega} |\nabla u|^\alpha \, dx \right)^{\frac{\beta}{\alpha}} \]
consequently
\[H^{\alpha(\beta-1)}(t) \int_{\Omega} |\nabla u|^\beta \, dx \leq C \left(\frac{b}{p} \right)^{\sigma(\beta-1)} \left(\int_{\Omega} |\nabla u|^\alpha \, dx \right)^{\frac{ps(\beta-1)+\beta}{2}} \] (19)
where \(C \) is a constant depending on \(\Omega \) only. By using (8) and
\[z^v \leq z + 1 \leq \left(1 + \frac{1}{a} \right) (z + a), \; \forall z \geq 0, \; 0 < v \leq 1, \; a \geq 0 \] (20)
we have the following
\[
\left(\int_{\Omega} |u|^p \, dx \right)^{\frac{m+\sigma p(m-1)}{p}} \leq \left(\int_{\Omega} |\nabla u|^\alpha \, dx \right)^{\frac{m+\sigma p(m-1)}{\alpha}} \\
\leq d \left(\int_{\Omega} |\nabla u|^\alpha \, dx + H(0) \right) \\
\leq d \left(\int_{\Omega} |\nabla u|^\alpha \, dx + H(t) \right), \; \forall t \geq 0 \] (21)
\[
\left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{\frac{ps+2}{2}} \leq d \left(\int_{\Omega} |\nabla u|^\alpha \, dx + H(t) \right), \; \forall t \geq 0 \] (22)
\[
\left(\int_{\Omega} |\nabla u|^\beta \, dx \right)^{\frac{ps(\beta-1)+\beta}{\alpha}} \leq d \left(\int_{\Omega} |\nabla u|^\alpha \, dx + H(t) \right), \; \forall t \geq 0 \] (23)
where \(d = 1 + 1/H(0) \). Inserting the estimates (17)–(19) and (21)–(23) into (16) we get

\[
L'(t) \geq ((1 - \sigma) - \varepsilon M)H^{-\sigma}(t)H'(t) + kH(t) + \left(\varepsilon \frac{k}{2} \right) \int_{\Omega} u_t^2 \, dx
\]

\[
- \frac{\varepsilon C_2}{M_2} \left(\int_{\Omega} |\nabla u|^2 \, dx + H(t) \right) - \varepsilon \int_{\Omega} |\nabla u|^2 \, dx
\]

\[
- \frac{\varepsilon C_3}{M_3^{\beta-1}} \left(\int_{\Omega} |\nabla u|^2 \, dx + H(t) \right) + \frac{k}{\alpha} \int_{\Omega} |\nabla u|^2 \, dx
\]

\[
- \frac{\varepsilon C_1}{M_1^{\beta^{-1}}} \left(\int_{\Omega} |\nabla u|^2 \, dx + H(t) \right) + b \left(\varepsilon - \frac{k}{p} \right) \int_{\Omega} |u|^p \, dx
\]

(24)

for some constant \(k \) and

\[
C_1 = \frac{aCd}{m} \left(\frac{b}{p} \right)^{\sigma(m-1)}, \quad C_2 = \frac{Cd}{4} \left(\frac{b}{p} \right)^{\sigma}, \quad C_3 = \frac{Cd}{\beta} \left(\frac{b}{p} \right)^{\sigma(\beta-1)}
\]

Using \(k = \varepsilon p \), we arrive at

\[
L'(t) \geq ((1 - \sigma) - \varepsilon M)H^{-\sigma}(t)H'(t) + \varepsilon \left(\frac{p + 2}{2} \right) \int_{\Omega} u_t^2 \, dx
\]

\[
+ \varepsilon \left(p - \frac{C_2}{M_2} - \frac{C_3}{M_3^{\beta-1}} - \frac{C_1}{M_1^{\beta^{-1}}} \right) H(t)
\]

\[
+ \varepsilon \left(\frac{p}{\alpha} - \frac{C_2}{M_2} - \frac{C_3}{M_3^{\beta-1}} - \frac{C_1}{M_1^{\beta^{-1}}} - 1 \right) \int_{\Omega} |\nabla u|^2 \, dx
\]

(25)

At this point, we choose \(M_1, M_2, M_3 \) large enough so that

\[
L'(t) \geq ((1 - \sigma) - \varepsilon M)H^{-\sigma}(t)H'(t)
\]

\[
+ \frac{\gamma \varepsilon}{\delta} H(t) + \int_{\Omega} u_t^2 \, dx + \int_{\Omega} |\nabla u|^2 \, dx
\]

(26)

where \(\gamma \) is a positive constant (this is possible since \(p > \alpha \)). By choosing \(\varepsilon < (1 - \sigma)/M \) so that

\[
L(0) = H^{1-\sigma}(0) + \varepsilon \int_{\Omega} u_0 u_1 \, dx > 0
\]

we obtain

\[
L(t) \geq L(0) > 0, \quad \forall t \geq 0
\]
and

\[L'(t) \geq \gamma e \left[H(t) + \int_{\Omega} u_t^2 \, dx + \int_{\Omega} |\nabla u|^\gamma \, dx \right] \] \tag{27}

Next, it is clear that

\[L^{1-\sigma}(t) \leq 2^{1-\sigma} \left\{ H(t) + \varepsilon^{1-\sigma} \left(\int_{\Omega} u_t u \, dx \right)^{1-\sigma} \right\} \]

By the Cauchy–Schwarz inequality and the embedding of the \(L^p(\Omega) \) spaces we have

\[\left| \int_{\Omega} u_t u \, dx \right| \leq \left(\int_{\Omega} u^2 \, dx \right)^{1/2} \left(\int_{\Omega} u_t^2 \, dx \right)^{1/2} \leq C \left(\int_{\Omega} |u|^\gamma \, dx \right)^{1/\gamma} \left(\int_{\Omega} u_t^2 \, dx \right)^{1/2} \]

which implies

\[\left| \int_{\Omega} u_t u \, dx \right|^{1-\sigma} \leq C \left(\int_{\Omega} |u|^\gamma \, dx \right)^{1/(1-\sigma)\gamma} \left(\int_{\Omega} u_t^2 \, dx \right)^{\frac{1}{2(1-\sigma)}} \]

Also Young’s inequality gives

\[\left| \int_{\Omega} u_t u \, dx \right|^{1-\sigma} \leq C \left[\left(\int_{\Omega} |u|^\gamma \, dx \right)^{\frac{\mu}{(1-\sigma)\gamma}} + \left(\int_{\Omega} u_t^2 \, dx \right)^{\frac{\theta}{2(1-\sigma)}} \right] \]

for \(1/\mu + 1/\theta = 1 \). We take \(\theta = 2(1 - \sigma) \), (hence \(\mu = 2(1 - \sigma)/(1 - 2\sigma) \)) to get

\[\left| \int_{\Omega} u_t u \, dx \right|^{1-\sigma} \leq C \left[\left(\int_{\Omega} |u|^\gamma \, dx \right)^{\frac{2}{(1-2\sigma)\gamma}} + \int_{\Omega} u_t^2 \, dx \right] \]

By Poincaré’s inequality, we obtain

\[\left| \int_{\Omega} u_t u \, dx \right|^{1-\sigma} \leq C \left[\left(\int_{\Omega} |\nabla u|^\gamma \, dx \right)^{\frac{2}{(1-2\sigma)\gamma}} + \int_{\Omega} u_t^2 \, dx \right] \]

By using (8) and (20) we deduce

\[\left(\int_{\Omega} |\nabla u|^\gamma \, dx \right)^{\frac{2}{(1-2\sigma)\gamma}} \leq \left(1 + \frac{1}{H(0)} \right) \left(\int_{\Omega} |\nabla u|^\gamma \, dx + H(t) \right) \]
Therefore
\[\left| \int_{\Omega} u_t u \, dx \right|^{\frac{1}{1-\sigma}} \leq C \left[H(t) + \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} u_t^2 \, dx \right], \quad \forall t \geq 0 \]
consequently
\[L^{\frac{1}{1-\sigma}}(t) \leq \Gamma \left[H(t) + \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} u_t^2 \, dx \right] \tag{28} \]
where \(\Gamma \) is positive constant. A combination of (27) and (28), thus, yields
\[L'(t) \geq \xi L^{\frac{1}{1-\sigma}}(t), \quad \forall t \geq 0 \tag{29} \]
Integration of (29) over \((0, t)\) gives
\[L^{\frac{\sigma}{1-\sigma}}(t) \geq \frac{1}{L^{\frac{\sigma}{1-\sigma}}(0) - \frac{\xi \sigma}{(1-\sigma)t}} \]
hence \(L(t) \) blow up in time
\[T^* \leq \frac{1 - \sigma}{\xi \sigma L^{\frac{\sigma}{1-\sigma}}(0)} \tag{30} \]

Remark 2.3
The time estimate (30) shows that the larger \(L(0) \) is the quicker the blow up takes place.

Remark 2.4
In (6) we only require that \(H(0) > 0 \), Unlike Yang [3], where it is required that \(H(0) > A \), a constant depending on the size of \(\Omega \). See condition (ii), Theorem 2.1 of [3].

Remark 2.5
If we consider
\[u_{tt} - \Delta u_t - \nabla(\sigma(\nabla u)\nabla u) - \nabla(\beta(\nabla u)\nabla u_t) + f(u_t) = g(u), \quad x \in \Omega, \ t > 0 \]
with the initial and boundary conditions of (1) we can establish a similar blow up result under the growth conditions of Theorem 2.3 of [3] on \(f, g, \sigma \) and \(\beta \).

ACKNOWLEDGEMENTS
The first author would like to express his sincere thanks to KFUPM for its continuous support.

REFERENCES
1. Andrews G. On the existence of solutions to the equation \(u_{tt} - u_{xx} = \sigma(u_x)_x \). *Journal of Differential Equations* 1980; 35:200–231.