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1. INTRODUCTION

Results concerning existence, blow up, and asymptotic behaviors of
smooth, as well as weak, solutions in classical thermoelasticity have been
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established by several authors over the past two decades. See in this regard
Refs. [1-3,5,6,8-15,18,20].

For thermoelasticity with second sound, global existence of smooth
solutions for the one-dimensional case, has been established by Tarabek.[*"!
In his work, the author used the usual energy argument to prove his result.
Saouli"® used the nonlinear semigroup theory presented by Kato!® to prove
a local existence result for a system similar to the one considered in Ref. [21].

Concerning the asymptotic behavior, Racke!'® discussed lately the
one-dimensional situation and established exponential decay results for sev-
eral initial boundary value problems. In particular he showed that, for small
enough initial data, classical solutions of a certain nonlinear problem decay
exponentially to the equilibrium state. Regarding the multi-dimensional
case (n =2,3) Racke!'”! established an existence result for the following
n-dimensional problem

Uy — uAu—(u+12)Vdivu+ gvo =0

0,+ ydivg+édivu, =0

q;+q+xkVe=0, xeQ,t>0 (1.1)

u(.,0) =uy, w,(.,0)=uy, 6(.,0 =6y, ¢q(.,00)=qy, x€N

u=0=0, xe€d,t=>0,
where Q is a bounded domain of R", with a smooth boundary 92, u =
u(x, ) € R" is the displacement vector, 6 = 0(x, 1) is the difference tempera-
ture, ¢ = g(x, 1) € R" is the heat flux vector, and u, A, B, ¥, 8, T, k are positive
constants, where u, A are Lame moduli and 7 is the relaxation time, a small
parameter compared to the others. In particular if t = 0, (1.1) reduces to the
system of classical thermoelasticity, in which the heat flux is given by
Fourier’s law instead of Cattaneo’s law. He also proved, under the conditions
rotu = rot¢ = 0, an exponential decay result for (1.1). This result is extended

to the radially semmetric solution, as it is only a special case.
In this paper we are concerned with the nonlinear problem

u, — pAu— (u + A)Vdivu + BVO = |ul’ u

0,4+ ydivg+ddivu, =0

9, +q+«kV0=0, xe€Q, t>0 (1.2)
u(.,0) =uy, ul.,0)=u;, 6(.0 =6, ¢q(.,0)=qy, xe
u=0=0, xed, t=>0,

for p > 2. This is a similar problem to (1.1) with a nonlinear source term
competing with the damping factor. We will establish a local existence
result and show that solutions with negative energy blow up in finite time.
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This work generalizes the one in Refs. [8,9] to thermoelasticity with second
sound. This paper is organized as follows: in section two we establish the
local existence. In section three the blow up result is proved.

2. LOCAL EXISTENCE

In this section, we establish a local existence result for (1.2) under a
suitable condition on p. First we establish an existence result for a related
linear problem

Uy — uAu—(u+1)Vdivu+ gve =1

0, +ydivg+8divy, =0

9, +q+«kV0=0, xeQ, t>0 (2.1)
u.,0) =uy, ul.,00=u, 6(.0 =06, ¢q(.,0)=qgg, x€Q
u=0=0, xed,t>0.

For this purpose we introduce the following spaces

= [H)(2) N HX()] x[Ho(2)] x H)(2) x D

D :={q e [L*(Q)]"/divq € L*()} (2.2)

H = [Hy(Q)] x[L2(@)]" x L) x [LA(@)]"

A w= max {11, ;. 0, ), DIt + 1t s 0 4 Dl } (2:3)

Ao = [l (ugs 11, 6, Go)IB + ey, 12,61, g1) 2.4)
where

uy = wAuy + (n +21)Vdivuy — BV6y + f (x,0)
0 = —ydivgy — 8divuy, (2.5)
q1 = —lg0 + kVb]/7.
Lemma 2.1. Assume that f € C'([0, T); LX(Q))". Then given any initial data
(ug, 1,0y, qo) € I, the problem (2.1) has a unique strong solution satisfying
(u,u,,0.¢) € C'([0, T); T) N C([0, T); H). (2.6)

Moreover we have

A = TAg+TT max {Ilf ()l + I/ DI} 2.7)

where T is a constant depending on u, A, B,y, 8, k, T only.
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Proof. The existence of solutions satisfying (2.6) is a direct result of
Theorem 2.2 of Ref. [17]. To establish (2.7), we multiply (2.1) by u,, 86/6,
Byq/(8k) respectively and integrate over € x (0 t) to get

;/ |:|u,| + u|Vul? + (A + p)(divu)? += |0| —l—ﬁlql i|(x,z)dx

1
=5 [ [0+ v G v + 0P + 2 |y

+/0 /Qf(x,s).u,(x,s)dxds. (2.8)

To obtain estimates on terms involving higher order derivatives, we apply
the difference operator

Aw(x, t) i=wx +ht) —w(x, 1), xeQ, te€[0,T), O0<h<T-—t
to the Eq. (2.1). By multiplying the resulting equations by A,u,, BA,0/3,
ByAnq/(8k) respectively, integrating over Q x (0, ), using integration by
parts, dividing by /%, and letting & go to zero we arrive at

1
3/ [|un| ulVul + Ok v +8 10,2+ 7 g }(x,z)dx

1
=2/ |:|M2| + 1l Ve P+ (4 p)(divag ) + % |91| +ﬁ|41| ](x)dx

+/0 /Qf,(x,s).ul,(x,s)dxds. (2.9)

By combining (2.8), (2.9), the (2.1), and using Cauchy-Schwarz inequality,
(2.7) is established.

Lemma 2.2. Assume that

2<p52(”_43), n=5 (2.10)

and v € C([0, T); HX(Q))" N (C'([0, T); H'(Q))". Then f = |v|’~?v satisfies

/ If (x, 0)Pdx < ClIvIIP 2, / fi(x. OPdx < Clv vl e,
Q Q
(2.11)

where C is a constant depending on Q and p only.

The proof is trivial. We only use the embedding of Sobolev spaces in
the LY spaces.

Remark 2.1. For n < 4, (2.11) remains valid without imposing (2.10).
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Theorem 2.3. Assume that (2.10) holds. Then given any (ug, uy, 0y, qo) € I1,
the problem (1.2) has a unique strong solution satisfying. (2.6), for T small
enough.

Proof. For M > 0 large and T > 0, we define a class of functions Z(M, T)
which consists of all functions (w, ¢, &) satisfying (2.6), the initial conditions
of (1.2), and

max {lue ur, 6. 9)C- DlIfy + 1t - 6, g ) O} < M. (2.12)

Z(M,T) is nonempty if M is large enough. This follows from the trace
theorem.!”” We also define the map F by (u.6,q):= F(w,¢,&), where
(u, 0, q) is the unique solution of the linear problem

u, — pAu— (u+ A)Vdivu + BVo = [y’ 2y

0, +ydivg+4sdivu, =0

¢, +q+xkV6=0, xe€Q, >0

u(.,0) =uy, w,(.,0)=u;, 6.0 =06, ¢q(,0)=¢qy, xe€
u=0=0, xe€dQ, >0 (2.13)

since [v[P 2y € [L*(R)]" by virtue of (2.10). We would like to show, for M
sufficiently large and T sufficiently small, that F is a contraction from
Z(M,T) into itself.

By using (2.7) and (2.11) we get

max {11, ;. 0. 9)C. DTy + a6, ) D7}

<TAy+ICT OmaxT{ V1222 + vl ||v||i§’;“} <TAg+TCTM? ™,

By choosing M large enough and 7 sufficiently small, (2.12) is established;
hence (1,0,q) € Z(M, T). So F maps Z(M, T) into itself.

Next we prove that F is a contraction. For this aim we equip Z(M, T)
with the complete' metric

d((vn1,¢m’ %.m), (Vl, ¢1’El))

- \/ max (0" — v v — 1,67 — 8%, " — g DI

"The completeness of the metric d follows from the weak * precompactness of
bounded sets in L*([0, T); L*(2)) and sequential weak lower semicontinuity of
norms in these spaces (see Ref. [20]).
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and set
UI:le—ul, ®::9m_91’ Q:qm_ql
V= vm _ Vl, P = ¢m _ ¢1’ { — Em _ %.1

where (", 0™, ¢") = FO™, ¢™, €™ and (', 0', ¢') = F(/', ¢, €). 1t is straight-
forward to see that (U, ®, Q) satisfies

U, — nAU — (u+ MVdivU + VO = p"P= 2™ — P~/
O,+ydivQ +48divU, =0

10, +0+kVO =0, x€Q, >0 (2.14)
U(,0)=U,(,0)=0(x,00=0(..,0) =0, xeQ

U=0=0, xecoQ, >0.

We multiply (2.14) by U,, B®/3, ByQ/(é«) respectively and integrate over
Q x (0,7) to get

%/ [|U[|2 + VU + (h + p)(div U)? +é 10 + lelz}(x, 1) dx
Q 1) Sk

t
< / / 2 — AU, 5) de ds
0 JQ
t
<C / VTV e {12+ 1127 s s (2.15)
0
Therefore (2.15) yields

(@™, 0™, 4", (', 6", ¢")) < TTMP2d((v"™, ¢", €™), (V. ¢, €)).  (2.16)

By choosing 7 so small that TTM?~2 < 1, the estimate (2.16) shows that F'is
a contraction. The contraction mapping theorem then guarantees the exist-
ence of a unique (u, 0, ¢) satisfying (1,0, q) = F(u, 0, q). Obviously it is the
unique solution of (1.2). The proof is completed.

3. BLOW UP RESULT

In this section we show that the solution (2.6) blows up in finite time if
E0) < 0, where

— _1 4 1 2 2
E(t) = p/ﬂlu(x, ] dx—+-2fﬂ(|u,| + wlVul*)(x, 1) dx

1 .
+§/Q ((,u+)»)(d1vu)2+§92+y8—irlq|2)(x, 1) dx. (3.1)
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Lemma 3.1. Suppose that

2
2ep<- . us=3 (3.2)
n—2
Then there exists a positive constant C > 1 depending on Q2 and p only such that
lully, < C(IVull3 + [lull}) (3.3)

for any u € HY(Q) and 2 < s < p.

Proof. If |lul, <1 then |ull}) < [lul; < C||Vul; by Sobolev embedding
theorems. If ||ull, > 1 then [Ju|, < [lull}. Therefore (3.3) follows.
We set

H(t) == —E(1) (3.4)

and use, throughout this paper, C to denote a generic positive constant
depending on 2 and p only. As a result of (3.1)—(3.4), we have

Corollary 3.2. Assume that (3.2) holds. Then
. 2 2 1
flull, < C{ (1 + —> llully —=H(t) —— Ak
pu 0 n
A . T
S R [ i A E LA (3.5)
n S Sk
Sor any u € (HY())" and 2 < s < p.

Theorem 3.3. Assume that (3.2) holds. Assume further that

p(p+2) > prd. (3.6)
Ky

Then for any initial data in T1 satisfying

EW0) <0, (3.7)
the solution (2.6) blows up in finite time.
Remark 3.1. The condition (3.6) is ‘physically’ reasonable due to the very

small value of t. For instance in Ref. [16], for the isotropic silicon and a
medium temperature of 300K we have

"
s’ K

2
Y~ 5.99 x 1077 {m}ng}’ P 148|:E]

B~ 391.62[ } T~ 107[s], 8=~ 163.82[K],

mK
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consequently we get

AN 72.367 x 1077
Ky

So (3.6) is satisfied for any p > 2.

Remark 3.2. If 7 =0, then (1.2) reduces to the classical system of thermo-
elasticity and the blow up result takes place without condition (3.6). This is
exactly what was proven in Refs. [8,9]. See also remarks by the end of Ref. [10].

Proof. We multiply Eq. (1.2) by —u,, —p60/8, —Byq/dt respectively and
integrate over 2, using integration by parts, and add equalities to get

H="L1gi3=0, viep.1); (3.8)

consequently we get
0 < HQO) < H(1), vt e[0,T), (3.9)
by virtue of (3.1) and (3.4). We then introduce

L(f) = H'™ () + 5/ |:u.u, + &uq} (x, 1) dx (3.10)
Q K

for ¢ small to be chosen later and

_(r=2
@p) -

By taking a derivative of (3.10) and using Eq. (1.2) we obtain

3.11)

L'(O=0—a)H () H' () +e{ lulls + I3 — sl Vulls — (e + )l diva3)
—eé/ u.qu—l—s&/ u;.qdx. (3.12)
KJo K Jo

We then use (3.1) and (3.4) to substitute for |lu||’; hence (3.12) takes the
form

L0 = (1= H “OH @) +e( 5+ 1)l + ne(5 = 1) 1vulp

P /3

+ o+ 25— 1) 1divad + 21015 + e 2 13

—i—spH(t)—eé/ uqu—}—e—/ u,.q dx. (3.13)
K
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We then exploit Young’s inequality to estimate the last two terms in (3.13)
as follows

f u;.q dx
Q

/u-qu ||u||2+ ||QI|2, Vb > 0.
Q

= 5 ||u;||2 T34 ||61||z, Va>0

Thus (3.13) yields

2
L) = (1 - a)H “(H () + s(” r2. o ’)nu,nz + us(’—z’ — 1) IVulp

2
b4 rB Bt m/
e+ (5= 1) ndivald + 251015 + 5 (B ) g3
b 1
+ep ()= 2 (S1a13 + 3511} G.149)

At this point we choose «a so that

2 1
A, =PE2 BT 4o g’(p” )>0.
K

a
This is possible by virtue of (3.6); hence (3.14) becomes
L'(0= (1= H ()H () +e A, |u, |3 +e45ll4113 + 45 ||w||§

+€A4||divuII§+8A5||9||§+8PH(1)—8ﬁ< ||61I|z+ Ak ||2> (3.15)

where A;—As are strictly positive constants depending only on p, 8,y,36,
K, , i, T. We also set b =2MyH %(t)/8 ; for M a constant to be deter-
mined; hence (3.15) gives

L' > [(1 —a) — eMIH “(OH' (1) + e A, |u,]3 + A4, )|qlI3 + e A5 Vul3

. Ce 4
+ eyl divull; + eAs|01I3 + epH (1) ——H Olluly,  (3.16)

where C, here and in the sequel, is a positive generic constant depending on
Q,p, B, y.8,k, h, ju, T only. We then use H(?) < |lull}/p to get, from (3.16),

L'() > [(1 —a) — eMIH () H'() + e A, w115 + eAllqll5 + e A3l Vull3

Ce .
+sA4||dwu||z+eA5||0||2+spH(t)—— )n It (3.17)
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Since 2 + ap < p we exploit (3.5) to obtain, from (3.17),

L= [0=0) - MU OH O e 4+ 5l

C C .
+e<A2+M)||q||§+sA3||Vu||%+s<A4+M>||dwun§

Cc\ o c Cef . 2\, 1
+8(A5 +M) 163 +8(p+M>H(t) —ﬁ<1 +ﬁ)||u||,,. (3.18)

At this point, we choose M large enough so that the coefficients of the terms
in (3.18) are strictly positive; hence we get

L'(t) = [(1 — a) — eM1H ~*(t)H (1)
+ eAo[H(@) + llu, |5 + 1 Vall3 + Il divuls + lgl3 + lulh],  (3.19)

where 4, > 0 is the minimum of these coefficients. Once M is fixed (hence
Ag), we pick ¢ small enough so that (1 —«) —eM > 0 and

L(0) = H'7%(0) + 8/ ug.(uy + ﬁq)(x) dx > 0.
Q K
Therefore (3.19) leads to
L'(t) = Aoe[H(O) + lugl13 + llgl3 + lull}]- (3.20)
Consequently we have
L(t) > LO) >0, Vt=>0.

Next we estimate
/ uuy(x, ) dx| < Cllullzllu,ll, < Cllullllull,,
Q

which implies

1/(1-0)

/ w(, x| < Cllully 1.
Q

Again Young’s inequality gives us

1/(1—a)

[wtenas < i g ], (3.21)
Q

for 1/r+1/s=1. We take s =2(1 — ), to get r/(1 —a) =2/(1 —2a) =p
by virtue of (3.11). Therefore (3.21) becomes

1/(1-a)
/ uu,(x, t) dx
Q

< C[llully + llu, 3], vt =o0. (3.22)
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Similarly we have

1/(1-a)
< C[Iullf + lu03], Ve=o0. (3.23)

/ uq(x, t) dx
Q

Finally by noting that

Ll/(l—a)(t)_ Hl_a([)+g il +ﬂ J 1/(1—a)
- o t . q (x,t) X

1/(1—a)

+ ‘/ uq(x, t) dx
Q

1/(1—a)
< C(H(t) + ‘/;2 uu,(x, t) dx )
< C[H@) + llully + lu I3 + llgl3]. Vi =o0.
and combining it with (3.20), (3.22), (3.23) we obtain
L'(t) > agL"""%(1), Vt>0 (3.24)

where a; is a positive constant depending on ¢4, and C. A simple integra-
tion of (3.24) over (0, f) then yields

1
—apt(p—2)/2°

(P-2/(p+2)
L D= T

Therefore L(r) blows up in a time

< l—«a
- aaO[L(O)](P—Z)/(p+2) :

*

(3.25)

Remark 3.3. The estimate (3.25) shows that the larger L(0) is the quicker the
blow up takes place.
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