I.D.____

_____Special HW # 1: MATH 302-T-032) [Due Wed (Mar. 20, 2004) Sr. #__ (Credit will be given only for Correct Solution: Show All work)

QI. Consider the following matrix

$$A = \begin{bmatrix} d_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3|d_3 - d_4| & 2|d_3 - d_4| \\ 0 & 0 & 2|d_3 - d_4| & 0 \end{bmatrix},$$

where di = i-th digit of your ID Number.

1) Rewrite the matrix A:
$$A = \begin{bmatrix} \Box & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \Box & \Box \\ 0 & 0 & \Box & 0 \end{bmatrix}$$

(2) Describe and sketch the Gerschgorin's Circles C1, C2, C3, C4 for the eigenvalues of A.

Center		C1	C2	C3	C4	
Doding	Center					
Kaulus	Radius					

(3) Find the eigenvalues of A.

4) Find a matrix Q such that $Q^{t}AQ=Diag(\lambda_{i})$

[*Diag* (λ_i) *is the diagonal matrix with eigen values of A as Diagonal entries*] Solve this problem on the back of the paper. Show all necessary work.

QII. Find a set from the following vectors which forms a largest set of Linearly independent vectors: $v_1 = [0, d_3, d_4, 0], v_2 = [0, d_3, d_2, 0], v_3 = [1, d_3, d_5, 0]$ $v_4 = [1, d_3, d_4, 0], v_5 = [0, d_5, d_4, 1]$