\qquad Special HW \# 1: MATH 302-T-032) [Due Wed (Mar. 20, 2004)
Sr. \# \qquad (Credit will be given only for Correct Solution: Show All work)
QI. Consider the following matrix

$$
A=\left[\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 3\left|d_{3}-d_{4}\right| & 2\left|d_{3}-d_{4}\right| \\
0 & 0 & 2\left|d_{3}-d_{4}\right| & 0
\end{array}\right],
$$

where $d i=\mathrm{i}$-th digit of your ID Number.

1) Rewrite the matrix A: $A=\left[\begin{array}{cccc}\square & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \square & \square \\ 0 & 0 & \square & 0\end{array}\right]$
2) Find a matrix Q such that $\mathrm{Q}^{\mathrm{t}} \mathrm{AQ}=\operatorname{Diag}\left(\lambda_{i}\right)$
[Diag $\left(\lambda_{i}\right)$ is the diagonal matrix with eigen values of A as Diagonal entries] Solve this problem on the back of the paper. Show all necessary work.
QII. Find a set from the following vectors which forms a largest set of Linearly independent vectors:
$v_{1}=\left[0, d_{3}, d_{4}, 0\right], v_{2}=\left[0, d_{3}, d_{2}, 0\right], v_{3}=\left[1, d_{3}, d_{5}, 0\right]$
$v_{4}=\left[1, d_{3}, d_{4}, 0\right], v_{5}=\left[0, d_{5}, d_{4}, 1\right]$
(2) Describe and sketch the Gerschgorin's Circles $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$ for the eigenvalues of A .

	C1	C2	C3	C4
Center				
Radius				

(3) Find the eigenvalues of A.

