Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. find derivatives of expressions involving $\ln u$
- 2. find derivatives of expressions involving $\log_b u$
- 3. explain what is logarithmic differentiation
- 4. find derivatives using method of logarithmic differentiation
- 5. differentiate functions of the form u^{ν}

Recall the following properties

which are needed for this section

•
$$\ln(xy) = \ln x + \ln y$$

•
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

•
$$\ln(x^r) = r \ln x$$

Derivatives of functions involving $\ln u$

Differentiation formula for $\ln u$

$$\frac{d(\ln u)}{du} = \frac{1}{u} \cdot \frac{du}{dx}$$

Derivatives of functions involving $\log_b u$

Differentiation formula for $\log_b u$

 $\frac{d(\log_b u)}{du} = \frac{1}{\ln b} \left(\frac{1}{u} \cdot \frac{du}{dx} \right)$

How?

Using $\log_b u = \frac{\ln u}{\ln b}$

See examples 1, 2, 3, 4, 5 done in class

How to perform logarithmic differentiation of f(x)?

Suitable when f(x) involves products, quotients or powers

Main idea

• Simplify before differentiating

How?

- Aim: To differentiate y=f(x) (1)
- If f(x) involves products, quotients or powers then
 - o take 'ln' on both sides of (1)
 - o simplify using properties of 'ln'
 - o differentiate after simplification
- We learn more with the help of example.

See example 6 done in class

Important application of logarithmic differentiation

Differentiating functions of the form

 u^{ν} where both u and v are functions of x

See examples 7, 8 done in class