King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

Math 102.14, Quiz-III, Spring 2006

$$
\begin{aligned}
& \text { 1. } \int \sec ^{3} x \tan ^{3} x d x=\int \sec ^{2} \theta \tan ^{2} \theta(\sec \theta \tan \theta) d \theta \\
& =\int \sec ^{2} \theta\left(\sec ^{2} \theta-1\right)(\sec \theta \tan \theta) d \theta \\
& =\int\left[\sec ^{4} \theta-\sec ^{2} \theta\right] \sec \theta \tan \theta d \theta \\
& \text { Wee } \operatorname{let}^{3} u=\sec \theta \Rightarrow d u=\sec \theta \tan \theta d \theta \rightarrow \\
& \int \sec ^{3} x \tan ^{3} x d x=\int\left[u^{4}-u^{2}\right] d u=\frac{u^{5}}{5}-\frac{u^{3}}{3}+C \\
& =\frac{\sec ^{5} \theta}{5}-\frac{\sec ^{3} \theta}{3}+C
\end{aligned}
$$

2. $\int x^{3} e^{x^{2}} d x$ let $u=x^{2} \quad d v=x e^{x^{2}} d x \rightarrow$

$$
\begin{aligned}
& d x=2 x d x \quad v=\frac{1}{2} e^{x^{2}} \\
& \int x^{3} e^{x^{2}} d x=\frac{1}{2} x^{2} e^{x^{2}}-\int \frac{1}{2}(2 x) e^{x^{2}} d x \\
& =\frac{1}{2} x^{2} e^{x^{2}}-\frac{1}{2} \int 2 x e^{x^{2}} d x=\frac{1}{2} x^{2} e^{x^{2}}-\frac{1}{2} e^{x^{2}}+ \\
& =\frac{1}{2} e^{x^{2}}\left[x^{2}-1\right]+C
\end{aligned}
$$

