Key Solution
King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

Math 102.09, Quiz-III, Spring 2006

1. $\int 42 \cos x \sin x(\sin x+1)^{5} d x$ We let $u=1+\sin x \Rightarrow \sin x=1$

$$
\begin{aligned}
& =42 \int(u-1) u^{5} d u=42 \int\left(u^{6}-u^{5}\right) d u=\cos x d x \\
& 42\left[\frac{u^{7}}{7}-\frac{u^{6}}{6}\right]+C=6 u^{7}-7 u^{6}+C \\
& =6(1+\sin x)^{7}-7(1+\sin x)^{6}+C \\
& =(1+\sin x)^{6}[-7+8(1+\sin x)]+C \\
& =(1+\sin x)^{6}(-1+\sin x)+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \int \frac{2 x d x}{(x+1)\left(x^{2}+1\right)} \\
& \frac{2 x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{(x+1)\left(x^{2}+1\right)}+\frac{C x+D}{x^{2}+1}=\frac{A\left(x^{2}+1\right)+(x+1)(C x+}{(x+1)\left(x^{2}+1\right)} \\
& \Rightarrow 2 x=A\left(x^{2}+1\right)+(x+1)(C x+D) \\
& \text { Let } x=0 \rightarrow 0=A+D \\
& \text { Let } x=-1 \Rightarrow-2=2 A \Rightarrow A=-1 \\
& \text { Let } x \Rightarrow 2=2 A+2(C+D) \Rightarrow 2=-2+2 C+2 \\
& \int \frac{2 x}{(x+1)\left(x^{2}+1\right)} d x=\int\left(\frac{-1}{x+1}+\frac{x+1}{x^{2}+1}\right) d x= \\
& \left.\int\left(\frac{-1}{x+1}+\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}\right) d x=-\ln |x+1|+\frac{1}{2} \ln \right\rvert\, x^{2}+1^{\prime} \\
& +\tan ^{-1} x+C \text {. }
\end{aligned}
$$

