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14. Let F(z,y,2) = yzIn(x)i + (22 — 3y2)j + 2y*z°k be a vector function.
It is clear that F' is defined and differentiable at any point (z,y, z) such that
x > 0. Moreover we have
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24. Let a = ai + 3j + 7k be a constant vector and r = zi + yj + zk. We
would like to prove the identity

V.[(r.r)a] = 2(r.a).

Indeed we have
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28. Let F = Pi+ @j + Rk be a vector function and let f be a real valued
function. We would like to prove the identity

Vx(fF)=f(VxF)+ (Vf)xF.

Indeed we have
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= f(VxF)+(Vf)xF.



