MATH 102 - Quiz 4 Section number: Student ID:

Instructions: You are required to attempt all questions. Each is worth 5 points.
Answers with insufficient working will result in zero for that question.
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lim — =1 (#£0/ # 00). So, the limit comparison test tells us that the
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two series ZO |ayn| and ZO - have the same characteristics. As ZO - is a har-
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monic series (which diverges by p-series test), Z |an| diverges.
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Second, we apply the alternating series test for Z an, which requires that
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are satisfied, the alternating series converges. Therefore, we have conditional
convergence.
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2. Determine whether E (1+ =)%e™™ converges or diverges.
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Solution:
Let a, = (1 + —=)%¢""™ and b, = e~ ". Using the limit comparison test, we have
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3. Find the interval of convergence of 1 + 1_2 + 52 + P +
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n—oo (n + 1)2

we have convergence for 2 < x < 4.

Now, we look at the boundary values: x = 2 and x = 4. At x = 2, we obtain
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the alternating series Z which satisfies the two criterion for a conver-
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gent alternating series: (a) -z is a decreasing function of n and lim — =0.
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At x = 4, we obtain the series Z — which converges by the p-series test.
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Thus, the interval of convergence is 2 < x < 4. The presence of 1 does not
change the interval of convergence.



