*The
current focus of Professor Mustapha's research is on proposing efficient
computable high-order discontinuous Galerkin methods for various
three-dimensional fractional diffusion models, with applications in
science and engineering. This includes the cases of variable and
hetergenuous diffusivity. He published several interesting articles (in
top journals) in this field, in collaboration with experts (in Numerical
Analysis) from different universities. We refer the interested readers
to the selected publications below.*

* Postal
Address:* Department of Mathematics and Statistics, KFUPM,
Dhahran 31261, Saudi Arabia

**
Location: 203-5, Building 5, Phone: +966 13 860 7199,
Email: kassem@kfupm.edu.sa **

**ARC
discovery grant ** (345000 AUD)**:**
B.
Henry, W. McLean and K. Mustapha,
Advanced
mathematical modeling and computation of fractional sub-diffusion problems
in complex domains,
Jan. 2014 to Dec. 2016.

1-*
*
W. McLean
& **K. M.**,
Time-stepping error bounds for fractional diffusion problems with non-smooth
initial data, J. Comput. Phys., 293 (2015)

2-
*
K. M.*,
Time-stepping discontinuous Galerkin methods for fractional diffusion problems,
Numer. Math., 130 (2015)

3-
B.
Cockburn & * K. M.*,
A hybridizable discontinuous Galerkin method for fractional diffusion problems,
Numer. Math., 130 (2015)

4-
*
K. M.*, B. Abdallah & K. Furati,
A discontinuous Petrov-Galerkin method for time-fractional diffusion equations,
SINUM, 52 (2014)

5-
*
K. M.* & D. Schoetzau,
Well-posedness of hp-version discontinuous Galerkin methods for fractional
diffusion wave equations, IMA J. Numer. Anal., 34 (2014)

6-
*
K. M.* & W. McLean,
Superconvergence of a discontinuous Galerkin method for fractional order
diffusion and wave equations, SINUM, 51 (2013)

7-
*
K. M.*,
A superconvergent discontinuous Galerkin method for Volterra integro-differential
equations, Math. Comp., 82 (2013)

8-
*
K. M.* & W. McLean,
Uniform convergence for a discontinuous Galerkin, time stepping method applied
to a fractional diffusion equation, IMA. J. Numer. Anal., 32 (2012)

9-
*
K. M.*, H. Brunner, H.
Mustapha, &
D.
Schoetzau,
An hp-version discontinuous Galerkin method for integro-differential equations
of parabolic type, SINUM,
49
(2011)

10-
*
K. M.*,
The hp- and h- versions of the discontinuous and local discontinuous Galerkin
methods for one-dimensional singularly perturbed models, Appl. Numer. Math., 61
(2011)

11-
*
K. M.*,
An implicit finite difference time-stepping method for a sub-diffusion equation,
with spatial discretization by finite elements, IMA. J. Numer. Anal., 31 (2011)

12-
*
K. M.* & W. McLean,
Piecewise-linear, discontinuous Galerkin method for a fractional diffusion
equation, Numer. Algorithms, 56 (2011)

13-
*
K. M.* &
H. Mustapha,
A
second-order accurate numerical method for a semi-linear integro-differential
equation with a weakly singular kernel, IMA J. Numer. Anal.,
30 (2010)

14- * K. M.* &
W.
McLean,
Discontinuous Galerkin method for an evolution equation with a positive type
memory term, Math. Comp.,
78 (2009)

15-
H. Mustapha
& * K. M.*,
A new approach to simulating flow in discrete fracture networks with an
optimized mesh, SISC, 29 (2007)

16-
W. McLean
& * K. M.*,
A second-order accurate numerical method for a fractional wave equation, Numer.
Math., 105 (2007)