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In this work we propose and analyze a fully discrete modified Crank–Nicolson finite element (CNFE) method
with quadrature for solving semilinear second-order hyperbolic initial-boundary value problems. We prove
optimal-order convergence in both time and space for the quadrature-modified CNFE scheme that does not
require nonlinear algebraic solvers. Finally, we demonstrate numerically the order of convergence of our
scheme for some test problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24: 350–367,
2008
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I. INTRODUCTION

Consider the following semilinear second-order hyperbolic initial-boundary value problem

∂2u

∂t2
−

d∑
i,j=1

∂

∂xi

(
aij (x)

∂u

∂xj

)
= f (x, t , u), (x, t) ∈ � × (0, T ], (1.1)

u(x, 0) = g1(x), x ∈ �, (1.2)

∂u

∂t
(x, 0) = g2(x), x ∈ �, (1.3)

u(x, t) = 0, (x, t) ∈ ∂� × [0, T ], (1.4)

where � ⊂ R
d is a convex bounded polygonal domain with boundary ∂�. The given functions

aij , g1 and g2 are smooth on �̄, with aij = aji for i, j = 1, . . . , d and the nonlinear source term f
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is continuous on �̄ × [0, T ] × R. We assume that aij satisfies the ellipticity property: there exists
a constant C > 0 such that

d∑
i,j=1

aij (x)αiαj ≥ C

d∑
i=1

α2
i , x ∈ �̄, α1, . . . , αn ∈ R. (1.5)

Consequently, the bilinear form associated with the elliptic part of (1.1)–(1.4), defined by

a(v1, v2) =
d∑

i,j=1

∫
�

aij (x)
∂v1

∂xi

∂v2

∂xj

dx, v1, v2 ∈ H 1
0 (�) (1.6)

satisfies the coercivity

a(v, v) ≥ C1‖v‖2
1, v ∈ H 1

0 (�) (1.7)

for some positive constant C1. Throughout the paper, for a nonnegative integer k, the standard
norm in the Sobolev space Wk

p(�) is denoted by ‖ · ‖Wk
p(�) where 1 ≤ p ≤ ∞. In the special case

p = 2, we shall write Wk
2 (�) = Hk(�) and so H 0(�) = L2(�). Furthermore, H 1

0 (�) denotes
the space of all functions φ ∈ H 1(�) with φ = 0 on ∂�.

A semidiscrete (and fully discrete) finite element analysis has been studied widely for solving
partial differential equations but without including the effect of quadrature in practical implemen-
tation. In contrast, fully discrete finite element methods with quadrature are frequently ignored. It
has been proposed and analyzed by few authors only, see for example [1,2] for elliptic problems,
and [3–6] for linear parabolic and hyperbolic problems. However, fully discrete finite element
schemes with quadrature for semilinear hyperbolic problems are yet to be analyzed.

In this paper, we are interested in finding the approximate solution of (1.1)–(1.4) by applying
a fully discrete quadrature scheme that does not require nonlinear algebraic solvers. In actual
practise, we have to evaluate the integrals occurring in the standard Galerkin method without
quadrature by a numerical quadrature scheme.

Following [3, 5], we construct for h > 0, a family of a quasiuniform triangulations Th of �̄

with

h = sup
K∈Th

(diam(K)).

With Th, we associate Sh ⊂ H 1
0 (�) is a subspace of all continuous piecewise polynomials of

degree at most r defined on Th. By the isoparametric finite elements of Cialert and Raviart [7],
the following approximation property is satisfied:

inf
v∈Sh

‖q − v‖m,Th
≤ Chs−m‖q‖s , q ∈ Hs(�) ∩ H 1

0 (�), 0 ≤ m ≤ s ≤ r + 1, (1.8)

where

‖.‖2
m,Th

=
∑
K∈Th

‖.‖2
Hm(K).

For a chosen parameter Nt , throughout the paper �t = {tn}Nt

n=0 denotes the uniform partition of the
time interval [0, T ] with tn = nτ and τ = T /Nt . We use the following notations: for a function
φ defined on �t ,

φn = φ(tn), φ̄n+ 1
2 = φn+1 + φn−1

2
, ∂tφ

n = φn+1 − φn

τ
, (1.9)
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and

∂̃tφ
n = φn+1 − φn−1

2τ
, ∂2

t φ
n = φn+1 − 2φn + φn−1

τ 2
. (1.10)

A two-time level quadrature Crank–Nicolson finite element (CNFE) scheme for a linear hyper-
bolic problem was first proposed by Baker and Dougalis [3], following the work of Raviart [5] on
the effect of quadrature on finite element solutions for parabolic problems using triangular finite
elements. Generalized results in [3] for rectangular elements using quadrature Crank–Nicolson
(CN) and alternating direction implicit (ADI) schemes were recently studied by Ganesh and the
first author [4]. The schemes in [4] were obtained by applying the quadrature aspect to the CN
and ADI schemes of [8] and [9] respectively. A related, but three-time level, quadrature CNFE
scheme for linear hyperbolic problems yielding second-order convergence in both time and space
was recently analyzed by Sinha [6].

The main contribution of this paper is to propose and analyze a quadrature fully discrete method
for solving a class of semilinear hyperbolic problems defined by (1.1)–(1.4) using a modified CN
finite difference discretization in time. In the time-dependent problem (1.1)–(1.4), the source term
f is a nonlinear function of the unknown solution. Applying the standard CN three-time level
schemes lead to solve a nonlinear algebraic system at each time step. In this work, we modify
the standard CN method applying to (1.1)–(1.4). This modification lead to solve only a linear
algebraic system at each time step.

In [3], second-order convergence in time and optimal order convergence in space was proved
for a fully discrete scheme using �-point quadrature rule on K ∈ Th with positive weights wj ,K

and nodes σj ,K ∈ K , j = 1, . . . , �:

∫
K

v(x) dx ≈
�∑

j=1

wj ,Kv(σj ,K), (v, z)h =
∑
K∈Th

�∑
j=1

wj ,K(vz)(σj ,K). (1.11)

Our fully discrete modified CNFE scheme with quadrature for (1.1)–(1.4) involves finding
U : �t → Sh such that(

∂2
t U

n, v
)
h
+ ah

(
Ū n+ 1

2 , v
) = (F(tn)U

n, v)h, v ∈ Sh, n = 1, . . . , Nt − 1, (1.12)

where the discrete bilinear form ah(·, ·) is defined by

ah(v1, v2) =
∑
K∈Th

�∑
j=1

wj ,K

[
d∑

i,j=1

aij

∂v1

∂xi

∂v2

∂xj

]
(σj ,K),

with v1 and v2 being differentiable on the interior of each cell K in Th. For each t ∈ [0, T ], the
Nemytskii operator F(t) is defined by

[F(t)ψ](x) = f (x, t , ψ(x)), x ∈ �̄.

Practically the above scheme is applicable for a wide class of quasilinear and nonlinear hyperbolic
problems. For example, if the functions aij (i, j = 1, . . . , d) in (1.1) depend on the unknown
solution, i.e., aij = aij (x, t , u) then the second term on the left hand side of (1.12) has to be
replaced with

ah

(
Un, Ū n+ 1

2 , v
) =

∑
K∈Th

�∑
j=1

wj ,K

[
d∑

i,j=1

aij (., (t
n + tn+1)/τ , Un)

∂Ūn+ 1
2

∂xi

∂v

∂xj

]
(σj ,K).
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Theoretically the affect of quadrature will increase the level of complexity especially in the case
of quasilinear and nonlinear problems.

The quadrature CNFE scheme (1.12) requires solutions of only linear systems and a selection
of U 0 and U 1 ∈ Sh. We select U 0 and U 1 using the data g1 and g2 in (1.2) and (1.3) respectively:

ah(U
0, v) = ah(g1, v), ah(U

1, v) = ah(g
∗
2 , v), v ∈ Sh, (1.13)

where

g∗
2(x) = g1(x) + τg2(x) + τ 2

2
utt (x, 0). (1.14)

The purpose of the present paper is to prove second-order convergence in time and optimal
order Hk norms convergence in space for the modified CNFE scheme (1.12) with k = 0, 1.
Moreover, we demonstrate numerically our theoretical convergence results.

The outline of this paper is as follows. In the next section, we recall from [3, 5] some suitable
assumptions and useful results required in our convergence analysis. Our convergence analysis
is based on analyzing error in two stages using a discrete type of an elliptic projection of the
exact solution in Sh as a comparison function. In Section III we study the convergence rate of the
comparison function to the exact solution of a continuous time problem. We prove optimal-order
convergence in both time and space of our implementable solutions in Section IV. The results of
numerical computations and their discussion are given in Section V.

II. PRELIMINARIES

Let L2(0, T ; Hs(�)), s ≥ 0 be the space of all functions v(x, t), x ∈ �, t ∈ (0, T ), such that for
each fixed t ∈ (0, T ), v(·, t) ∈ Hs(�) and ‖v‖s ∈ L2(0, T ).

Throughout the paper, for each fixed t ∈ [0, T ], we assume that f (·, ·, t , ·) ∈ C(�̄ × R), and
locally Lipschitz, that is

|f (x, t , z1) − f (x, t , z2)| ≤ C|z1 − z2|, x ∈ �̄, t ∈ [0, T ], |z1|, |z2| ≤ D(u), (2.1)

where D(u) is a positive constant quantity that depends on u, and C denotes a generic positive
constant which may depend on r , but which is independent of h and τ .

In order to prove optimal-order convergence results of our quadrature CNFE solution we
assume that F(t)u ∈ L2(0, T ; Hr+1(�)),

u, ut , utt ∈ L2(0, T ; Hr+2(�)), uttt , utttt ∈ L2(0, T ; Hr+1(�)),

and aij ∈ Wr+1
∞ (�) for i, j = 1, . . . , d . We require such regularity on the exact solution mainly

due to the technical details involved in the analysis of the quadrature CNFE method and also due
to the nonlinearity of the forcing term f . Slightly different assumptions on u were assumed by
Baker and Dougalis in their convergence analysis where f in (1.1) was independent of u.

Throughout this paper, we follow [5] in our assumption on the quadrature formula (1.11).
We assume that the quadrature formula (1.11) satisfies the following accuracy requirement. Let
ψ ∈ Wr+1

∞ (�). For each K ∈ Th, let g ∈ Hr+1(K) and v be a polynomial of degree r on K , then
for r + 1 − d

2 > 0,

|(ψg, v) − (ψg, v)h| ≤ Chr+1‖ψ‖
Wr+1∞ (�)

‖g‖r+1,Th
‖v‖0,Th

, (2.2)
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and for v ∈ Sh and r − d

2 > 0,

|a(g, v) − ah(g, v)| ≤ Chr max
1≤i,j≤d

‖aij‖Wr∞(�)‖g‖r+1,Th
‖v‖1,Th

. (2.3)

Since the forcing term f in (1.1) depends on the unknown solution u, our convergence analy-
sis requires us to assume that the quadrature formula satisfying the following additional error
estimate: for g ∈ Wr+1

1 (K) and r + 1 − d > 0,∣∣∣∣∣
∫

K

g(x) dx −
�∑

j=1

wj ,Kg(σj ,K)

∣∣∣∣∣ ≤ Chr+1‖g‖
Wr+1

1 (K)
. (2.4)

(The proof of (2.3) and (2.4) can be found in [10]). We also assume that (·, ·)h is an inner product
on Sh × Sh and thus induces a norm on Sh defined by

‖v‖h = (v, v)
1/2
h , v ∈ Sh.

We assume that the norms ‖.‖0 and ‖.‖h are equivalent on Sh: there exist positive constants C1

and C2 such that

C1‖v‖h ≤ ‖v‖0 ≤ C2‖v‖h, v ∈ Sh. (2.5)

Furthermore, we assume that ah(. , .) is coercive on Sh × Sh: there exists a positive constant C1

such that

ah(v, v) ≥ C‖v‖2
1, v ∈ Sh. (2.6)

The above assumptions on the quadrature formula (1.11) holds under suitable hypothesis on the
set of the nodes σj ,K ∈ K , j = 1, . . . , � and the degree of precision.

Throughout the paper, our analysis required the use of two different types of inverse inequalities:
if v is a polynomial of degree s > 0 on K ∈ Th, then

‖v‖W0∞(K) ≤ Ch−d/2‖v‖L2(K) and ‖v‖Hj (K) ≤ Ch−j‖v‖L2(K), j ≤ s.

III. ERROR ESTIMATE OF THE COMPARISON FUNCTION

Following a traditional approach, our convergence analysis is based on dividing the error between
the exact solution u and the computable U as u − U = (u − W) + (W − U), where W is a com-
parison function obtained using an appropriate quadrature elliptic projection of the exact solution
u in Sh, for each fixed time.

In this section we analyze the first-stage error of the comparison function, by choosing
W : [0, T ] → Sh to be the solution of

ah(W , v) = ah(u, v), v ∈ Sh, t ∈ [0, T ]. (3.1)

In the next theorem we bound the comparison function error η := u − W and its derivatives.

Theorem 3.1. For each t ∈ [0, T ], W satisfying (3.1) exists and∥∥∥∥∂iη

∂t i

∥∥∥∥
m

≤ Chr+1−m

∥∥∥∥∂iu

∂t i

∥∥∥∥
r+2

, m = 0, 1, i = 0, 1, 2. (3.2)
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Proof. Since the linear system of equations corresponding to (3.1) is square, existence of W

follows from uniqueness. To prove the uniqueness, we assume that there exist W and V satisfying
(3.1). Hence

ah(W − V , v) = 0, v ∈ Sh, t ∈ [0, T ]. (3.3)

From (2.6) and (3.3) with v = W −V , we have ‖V −W‖2
1 ≤ ah(V −W , V −W) = 0 and hence

V = W .
Next, we prove (3.2) for i = 0 and m = 1. By the hypothesis of Sh, there exists a function

uh : [0, T ] −→ Sh such that

‖u − uh‖m ≤ Chr+1−m‖u‖r+1, m = 0, . . . , r + 1. (3.4)

The triangle inequality and (3.4) yield

‖η‖1 ≤ ‖u − uh‖1 + ‖uh − W‖1 ≤ Chr‖u‖r+1 + ‖uh − W‖1, t ∈ [0, T ]. (3.5)

To bound ‖uh − W‖1, we use (3.1), (2.3), the Cauchy-Schwarz inequality, and (3.4) to obtain for
any v ∈ Sh

ah(W − uh, v) = [ah(u − uh, v) − a(u − uh, v)] + a(u − uh, v)

≤ Chr‖u − uh‖r+1,Th
‖v‖1 + ‖u − uh‖1‖v‖1 ≤ Chr‖u‖r+1‖v‖1,

and hence, from (2.6) with v = W − uh,

‖W − uh‖2
1 ≤ Cah(W − uh, W − uh) ≤ Chr‖u‖r+1‖W − uh‖1. (3.6)

Using (3.5) and (3.6), we obtain (3.2) for i = 0 and m = 1.
Next we prove (3.2) for i, m = 0. For each fixed t ∈ [0, T ], let φ ∈ H 2(�) ∩ H 1

0 (�) be the
unique solution of

a(φ, v) = (η, v), v ∈ H 1
0 (�), (3.7)

satisfying the regularity property

‖φ‖2 ≤ C‖η‖0. (3.8)

It is well known from the approximation theory that there exists a piecewise linear polynomial φ̃

defined on Th such that

‖φ − φ̃‖1 ≤ Ch‖φ‖2, (3.9)

and hence (3.8) and the triangle inequality give

‖φ − φ̃‖1 ≤ Ch‖η‖0, ‖φ̃‖1 ≤ C‖φ‖2 ≤ C‖η‖0. (3.10)

Further, (3.7) and (3.1) yield

‖η‖2
0 = (η, η) = a(φ, η) = a(φ − φ̃, η) + [a(φ̃, η) − ah(φ̃, η)]. (3.11)

The Cauchy–Schwarz inequality, (3.10), and (3.2) (for m = 1, i = 0),

|a(φ − φ̃, η)| ≤ C‖φ − φ̃‖1‖η‖1 ≤ Chr+1‖u‖r+2‖η‖0. (3.12)
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Using η = u − W , the triangle inequality, (2.2), (3.10), and (3.2) (for m = 1, i = 0), yield

|a(η, φ̃) − ah(η, φ̃)| ≤ |a(u, φ̃) − ah(u, φ̃)| + |a(W , φ̃) − ah(W , φ̃)|
≤ Chr+1‖u‖r+2‖φ̃‖1 + Chr+1‖φ̃‖1‖W‖1

≤ Chr+1(‖u‖r+2 + ‖W‖1)‖η‖0

≤ Chr+1(‖u‖r+2 + ‖η‖1 + ‖u‖1)‖η‖0 ≤ Chr+1‖u‖r+2‖η‖0. (3.13)

Now, (3.2) for i = m = 0 follows from (3.11)–(3.13) and hence (3.2) is proved for i = 0 and
m = 0, 1. In the above arguments, if we replace u and W by ∂iu

∂ti
and ∂iW

∂ti
respectively, we get (3.2)

for i = 1, 2.

In the next lemma we prove that the comparison function W is uniformly bounded. This result
will be used later to prove that the approximate solution Un for n = 1, . . . , Nt is also uniformly
bounded. The main aim behind proving such results is to avoid using a global Lipschitz assumption
on f (see (2.1)).

Lemma 3.2. ‖W‖∞ ≤ C‖u‖r+2 for each t ∈ [0, T ].

Proof. For a fixed t ∈ [0, T ], let zK be a linear polynomial interpolate u at the corners of K

in Th, see [10]. Then ‖zK‖W0∞(K) ≤ ‖u‖W0∞(K) ≤ ‖u‖∞ ≤ C‖u‖r+1 where in the last inequality
we used the Sobolev embedding theorem.

Using this and the triangle inequality we get

‖W‖∞ = max
K∈Th

‖W‖W0∞(K) ≤ max
K∈Th

(‖zK‖W0∞(K) + ‖W − zK‖W0∞(K)

)
≤ C‖u‖r+1 + max

K∈Th

‖W − zK‖W0∞(K).

Now, the inverse inequality (W − zK is a polynomial on K), zK − W = η − (u − zK) on K , the
triangle inequality, (3.2), and ‖z‖W0∞(K) ≤ ‖u‖W0∞(K) ≤ C‖u‖r+1, yield

‖W − zK‖W0∞(K) ≤ Ch−d/2‖W − zK‖L2(K)

≤ Ch−d/2[‖η‖L2(K) + ‖u‖L2(K) + ‖zK‖L2(K)]
≤ Ch−d/2

[‖η‖0 + hd/2‖u‖W0∞(K) + hd/2‖zK‖W0∞(K)

]
≤ C(‖u‖r+2 + ‖u‖∞) ≤ C‖u‖r+2,

and hence the proof is complete.

IV. CONVERGENCE ANALYSIS

In this section, we prove optimal-order convergence of our scheme by analyzing the error un−Un,
for n = 0, . . . , Nt in the L2 and H 1 norms, where U 0, U 1 and {Un}Nt

n=2 are defined by (1.13) and
(1.12) respectively. In the remainder of the paper, we use the following notation

ξn = Un − Wn, n = 0, . . . , Nt . (4.1)
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It is clear that ξ 0 = 0. In the next Lemma, we derive the bound ξ 1. We aim to bound partially the
second stage error bound ξn for n = 2, . . . , Nt in Theorem 4.3 after proving some needed results
in Lemma 4.2.

Lemma 4.1. If U 1 is given by (1.13) and τ ≤ Ch, then

τ−1‖ξ 1‖1 ≤ Chr+1

∫ t1

0
‖uttt‖r+1 ds + τ 2 max

0≤t≤t1
‖uttt‖1

Proof. Using (2.6), (4.1), (1.13), (3.1), (2.3), and the Cauchy-Schwarz inequality, we obtain

‖ξ 1‖2
1 ≤ Cah(ξ

1, ξ 1) = Cah(U
1 − W 1, ξ 1) = Cah

(
g∗

2 − u1, ξ 1
)

≤ C|ah

(
g∗

2 − u1, ξ 1
) − a

(
g∗

2 − u1, ξ 1
)| + C|a(

g∗
2 − u1, ξ 1

)|
≤ Chr

∥∥g∗
2 − u1

∥∥
r+1

‖ξ 1‖1 + C
∥∥g∗

2 − u1
∥∥

1
‖ξ 1‖1. (4.2)

Using the Taylor expansion, (1.2), (1.3), (1.14), we obtain for x ∈ �,

u1(x) = u(x, τ) = u(x, 0) + τut (x, 0) + τ 2

2
utt (x, 0) + 1

2

∫ t1

0
(t1 − s)2uttt ds

= g1(x) + τg2(x) + τ 2

2
utt (x, 0) + 1

2

∫ t1

0
(t1 − s)2uttt ds

= g∗
2(x) + 1

2

∫ t1

0
(t1 − s)2uttt ds.

Hence, (4.2) and τ ≤ Ch yield

‖ξ 1‖2
1 ≤ C

(
hr

∥∥∥∥1

2

∫ t1

0
(t1 − s)2uttt

∥∥∥∥
r+1

+
∥∥∥∥1

2

∫ t1

0
(t1 − s)2uttt

∥∥∥∥
1

)
‖ξ 1‖1

≤ Cτ 2

(
hr

∫ t1

0
‖uttt‖r+1 ds +

∫ t1

0
‖uttt‖1 ds

)
‖ξ 1‖1

≤ Cτ

(
hr+1

∫ t1

0
‖uttt‖r+1 ds + τ 2 max

0≤t≤t1
‖uttt‖1

)
‖ξ 1‖1,

and thus the proof is complete.

The next lemma is needed to derive bounds for some terms that appear in Theorem 4.3.

Lemma 4.2. If vn ∈ Sh, then for 4 ≤ j ≤ Nt

τ

j−1∑
n=1

|a(un, ∂̃t v
n)−ah(u

n, ∂̃t v
n)| ≤ C(u)

ε
h2r+2+

(
Cτ

j−2∑
n=2

‖vn‖2
1 + ε

j∑
i=j−1

‖vi‖2
1 + C

1∑
i=0

‖vi‖2
1

)
,

where in the remainder of the paper, ε > 0 and C(u) denotes a generic positive constant which
may depend on r and u, but which is independent of h and τ .
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Proof. Using (1.10), we have

2τ

j−1∑
n=1

a(un, ∂̃t v
n) =

j−1∑
n=1

a(un, vn+1) −
j−1∑
n=1

a(un, vn−1) =
j∑

n=2

a(un−1, vn) −
j−2∑
n=0

a(un+1, vn)

= 2τ

j−2∑
n=2

a(∂̃tu
n, vn) +

j∑
i=j−1

a(ui−1, vi) −
1∑

i=0

a(ui+1, vi). (4.3)

Similarly,

2τ

j−1∑
n=1

ah(u
n, ∂̃t v

n) = 2τ

j−2∑
n=2

ah(∂̃tu
n, vn) +

j∑
i=j−1

ah(u
i−1, vi) −

1∑
i=0

ah(u
i+1, vi). (4.4)

Using (4.3), (4.4), the triangle inequality, and (2.2), we obtain

τ

j−1∑
n=1

|a(un, ∂̃t v
n) − ah(u

n, ∂̃t v
n)|

≤ τ

j−2∑
n=2

|a(∂̃tu
n, vn) − ah(∂̃tu

n, vn)|

+
j∑

i=j−1

|a(ui−1, vi) − ah(u
i−1, vi)| +

1∑
i=0

|a(ui+1, vi) − ah(u
i+1, vi)|.

≤ Chr+1

(
τ

j−2∑
n=2

‖∂̃tu
n‖r+2‖vn‖1 +

j∑
i=j−1

‖ui−1‖r+2‖vi‖1 +
1∑

i=0

‖ui+1‖r+2‖vi‖1

)
. (4.5)

Using 2τ ∂̃tu
n = ∫ tn+1

tn−1
ut ds, the Cauchy–Schwarz and Cauchy’s inequalities, we get

τhr+1‖∂̃tu
n‖r+2‖vn‖1 ≤ Chr+1

∫ tn+1

tn−1

‖ut‖r+2 ds ‖vn‖1

≤ Chr+1

(∫ tn+1

tn−1

‖ut‖2
r+2 ds

)(1/2)

τ 1/2‖vn‖1

≤ Ch2r+2

∫ tn+1

tn−1

‖ut‖2
r+2 ds + τ‖vn‖2

1,

and so

τhr+1
j−2∑
n=2

‖∂̃tu
n‖r+2‖vn‖1 ≤ Ch2r+2

∫ tj−1

t1

‖ut‖2
r+2 ds + τ

j−2∑
n=2

‖vn‖2
1

≤ C(u)h2r+2 + τ

j−2∑
n=2

‖vn‖2
1. (4.6)
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For bounding the second term in (4.5), we use the ε inequality to get

Chr+1
j∑

i=j−1

‖ui−1‖r+2‖vi‖1 ≤
j∑

i=j−1

(
C

ε
h2r+2‖ui‖2

r+2 + ε‖vi‖2
1

)

≤ C(u)

ε
h2r+2 + ε

j∑
i=j−1

‖vi‖2
1. (4.7)

To bound the last term in (4.5), we use the Cauchy’s inequality to obtain

hr+1
1∑

i=0

‖ui+1‖r+2‖vi‖1 ≤
1∑

i=0

(
h2r+2‖ui‖2

r+2 + ‖vi‖2
1

) ≤ C(u)h2r+2 +
1∑

i=0

‖vi‖2
1. (4.8)

Therefore desired result follows from (4.5)–(4.8).

In the next theorem, we partially derive the second-stage error bound ξn for n = 1, . . . , Nt .

Theorem 4.3. If τ is sufficiently small, then

‖ξn−1‖2
1 + ‖ξn‖2

1 ≤ Cτ

n−1∑
i=1

‖F(ti)U
i − F(ti)W

i‖2
h + C(u)(τ 4 + h2r+2), n = 1, . . . , Nt .

Proof. Setting Lu = − ∑d

i,j=1
∂

∂xi
(aij (x) ∂u

∂xj
). Using (1.12), η = u − W , (3.1), and the fact

that (Lu, ∂̃t ξ
n) = a(u, ∂̃t ξ

n), we obtain

(
∂2

t ξ
n, ∂̃t ξ

n
)
h
+ ah(ξ̄

n+ 1
2 , ∂̃t ξ

n)

= (
∂2

t U
n, ∂̃t ξ

n
)
h
+ ah(Ū

n+ 1
2 , ∂̃t ξ

n) − (
∂2

t W
n, ∂̃t ξ

n
)
h
− ah(W̄

n+ 1
2 , ∂̃t ξ

n)

= (F(tn)U
n, ∂̃t ξ

n)h + (
∂2

t η
n − ∂2

t u
n, ∂̃t ξ

n
)
h
− ah(ū

n+ 1
2 , ∂̃t ξ

n)

= (F(tn)U
n − F(tn)u

n, ∂̃t ξ
n)h + (

∂2
t η

n − ∂2
t u

n, ∂̃t ξ
n
)
h
+ (F(tn)u

n − Lun, ∂̃t ξ
n)h

+ [(Lun, ∂̃t ξ
n)h − (Lun, ∂̃t ξ

n)] + [a(un, ∂̃t ξ
n) − ah(u

n, ∂̃t ξ
n)] + ah(u

n − ūn+ 1
2 , ∂̃t ξ

n),

and hence from (1.1), we get

(
∂2

t ξ
n, ∂̃t ξ

n
)
h
+ ah(ξ̄

n+ 1
2 , ∂̃t ξ

n) =
6∑

i=1

I n
i , n = 1, . . . , Nt − 1, (4.9)

where

I n
1 = (

un
tt − ∂2

t u
n, ∂̃t ξ

n
)
h
, (4.10)

I n
2 = (

∂2
t η

n, ∂̃t ξ
n
)
h
, (4.11)

I n
3 = (Lun, ∂̃t ξ

n)h − (Lun, ∂̃t ξ
n), (4.12)
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I n
4 = a(un, ∂̃t ξ

n) − ah(u
n, ∂̃t ξ

n), (4.13)

I n
5 = ah(u

n − ūn+ 1
2 , ∂̃t ξ

n) = −1

2
ah

(
τ 2∂2

t u
n, ∂̃t ξ

n
)
, (4.14)

I n
6 = (F(tn)U

n − F(tn)u
n, ∂̃t ξ

n)h. (4.15)

For the first term on the left-hand side of (4.9), we use (1.9) and (1.10) to obtain

(
∂2

t ξ
n, ∂̃t ξ

n
)
h

= 1

2τ
[(∂tξ

n − ∂tξ
n−1, ∂tξ

n + ∂tξ
n−1)h] = 1

2τ

[‖∂tξ
n‖2

h − ‖∂tξ
n−1‖2

h

]
. (4.16)

Similarly, we get

ah(ξ̄
n+ 1

2 , ∂̃t ξ
n) = 1

4τ
[ah(ξ

n+1 + ξn−1, ξn+1 − ξn−1)]

= 1

4τ
[ah(ξ

n+1, ξn+1) − ah(ξ
n−1, ξn−1)]. (4.17)

Next we bound terms on the right-hand side of (4.9). Using (4.10), the triangle inequality, (2.2),
and the Cauchy–Schwarz inequality, we obtain

|I n
1 | ≤ ∣∣(un

tt − ∂2
t u

n, ∂̃t ξ
n
) − (

un
tt − ∂2

t u
n, ∂̃t ξ

n
)
h

∣∣ + ∣∣(un
tt − ∂2

t u
n, ∂̃t ξ

n
)∣∣

≤ Chr+1
∥∥un

tt − ∂2
t u

n
∥∥

r+1
‖∂̃t ξ

n‖0 + ∥∥un
tt − ∂2

t u
n
∥∥

0
‖∂̃t ξ

n‖0. (4.18)

It follows from the Peano-Kernel Theorem (see, e.g., Theorem 1.5 in [11]) that

un
tt − ∂2

t u
n =

∫ tn+1

tn−1

G(s)utttt ds, |G(s)| ≤ Cτ , s ∈ [tn−1, tn+1],

hence

∥∥un
tt − ∂2

t u
n
∥∥

r+1
≤ Cτ

∫ tn+1

tn−1

‖utttt‖r+1 ds. (4.19)

Using (2.5), (1.10), and the triangle inequality, we have

‖∂̃t ξ
n‖h ≤ C‖∂̃t ξ

n‖0 ≤ C

n∑
i=n−1

‖∂tξ
i‖0. (4.20)

Now, (4.18)–(4.20), and the Cauchy–Schwarz and Cauchy’s inequalities yield

∣∣I n
1

∣∣ ≤ Cτ

∫ tn+1

tn−1

‖utttt‖r+1 ds

n∑
i=n−1

‖∂tξ
i‖0 ≤ Cτ 3

∫ tn+1

tn−1

‖utttt‖2
r+1 ds +

n∑
i=n−1

‖∂tξ
i‖2

0. (4.21)

Next we bound I n
2 in (4.11). By the hypothesis of Sh, for each n = 1, . . . , Nt − 1, there exists V n

in Sh such that ∥∥∂2
t u

n − V n
∥∥

m,Th
≤ Chr+1−m

∥∥∂2
t u

n
∥∥

r+1
, m = 0, . . . , r + 1,
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and thus, using

τ 2∂2
t u

n =
∫ tn+1

tn−1

(τ − |s − tn|)utt ds, (4.22)

yields

∥∥∂2
t u

n − V n
∥∥

m,Th
≤ Cτ−1hr+1−m

∫ tn+1

tn−1

‖utt‖r+1 ds, m = 0, . . . , r + 1. (4.23)

Using (4.11), η = u − W , the triangle inequality, (2.2), the Cauchy–Schwarz inequality, and
(4.23) we obtain

∣∣I n
2

∣∣ ≤ ∣∣(∂2
t u

n − V n, ∂̃t ξ
n
)
h
− (

∂2
t u

n − V n, ∂̃t ξ
n
)∣∣ + ∣∣(∂2

t u
n − V n, ∂̃t ξ

n
)∣∣ + ∣∣(∂2

t W
n − V n, ∂̃t ξ

n
)
h

∣∣
≤ Chr+1

∥∥∂2
t u

n − V n
∥∥

r+1,Th
‖∂̃t ξ

n‖0 + C
∥∥∂2

t u
n − V n

∥∥
0
‖∂̃t ξ

n‖0 + ∣∣(∂2
t W

n − V n, ∂̃t ξ
n
)
h

∣∣
≤ Cτ−1hr+1

∫ tn+1

tn−1

‖utt‖r+1 ds‖∂̃t ξ
n‖0 + ∣∣(∂2

t W
n − V n, ∂̃t ξ

n
)
h

∣∣. (4.24)

To bound |(∂2
t W

n − V n, ∂̃t ξ
n)h| we use the Cauchy–Schwarz inequality, (2.5), W = u − η, the

triangle inequality, (4.22) with η in place of u, and (3.2) to obtain

∣∣(∂2
t W

n − V n, ∂̃t ξ
n
)
h

∣∣ ≤ C
∥∥∂2

t W
n − V n

∥∥
h
‖∂̃t ξ

n‖h ≤ C
∥∥∂2

t W
n − V n

∥∥
0
‖∂̃t ξ

n‖0

≤ C
(∥∥∂2

t u
n − V n

∥∥
0
+ ∥∥∂2

t η
n
∥∥

0

)‖∂̃t ξ
n‖0

≤ Cτ−1

∫ tn+1

tn−1

(hr+1‖utt‖r+1 + ‖ηtt‖0) ds ‖∂̃t ξ
n‖0

≤ Cτ−1hr+1

∫ tn+1

tn−1

‖utt‖r+2 ds ‖∂̃t ξ
n‖0. (4.25)

Hence, (4.20), (4.24), (4.25) the Cauchy–Schwarz and Cauchy’s inequalities give

∣∣I n
2

∣∣ ≤ Cτ−1hr+1

∫ tn+1

tn−1

‖utt‖r+2 ds‖∂̃t ξ
n‖0

≤ Cτ−1hr+1

∫ tn+1

tn−1

‖utt‖r+2 ds

n∑
i=n−1

‖∂tξ
i‖0

≤ Cτ−1/2hr+1

(∫ tn+1

tn−1

‖utt‖2
r+2 ds

)1/2 n∑
i=n−1

‖∂tξ
i‖0

≤ Cτ−1h2r+2

∫ tn+1

tn−1

‖utt‖2
r+2 ds +

n∑
i=n−1

‖∂tξ
i‖2

0. (4.26)
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To bound I n
3 given in (4.12), we use (1.1), (2.2), (4.20), and Cauchy’s inequality to obtain

∣∣I n
3

∣∣ ≤ ∣∣(un
tt , ∂̃t ξ

n
) − (

un
tt , ∂̃t ξ

n
)
h

∣∣ + |(F(tn)u
n, ∂̃t ξ

n) − (F(tn)u
n, ∂̃t ξ

n)h|
≤ Chr+1

(∥∥un
tt

∥∥
r+1

+ ‖F(tn)u
n‖r+1

)‖∂̃t ξ
n‖0

≤ Ch2r+2
(∥∥un

tt

∥∥2

r+1
+ ‖F(tn)u

n‖2
r+1

) +
n∑

i=n−1

‖∂tξ
i‖2

0. (4.27)

The bound of I4 will be given later. For bounding I n
5 , we use (4.14), the triangle inequality, (2.3),

integration by parts, (4.22), the Cauchy–Schwarz, inverse, and Cauchy’s inequalities, and (4.20)
to get

∣∣I n
5

∣∣ ≤ ∣∣a(
τ 2∂2

t u
n, ∂̃t ξ

n
) − ah

(
τ 2∂2

t u
n, ∂̃t ξ

n
)∣∣ + ∣∣a(

τ 2∂2
t u

n, ∂̃t ξ
n
)∣∣

≤ Chr
∥∥τ 2∂2

t u
n
∥∥

r+1
‖∂̃t ξ

n‖1 + ∣∣(τ 2L∂2
t u

n, ∂̃t ξ
n
)∣∣

≤ Chr−1τ

∫ tn+1

tn−1

‖utt‖r+1 ds ‖∂̃t ξ
n‖0 + Cτ

∫ tn+1

tn−1

‖Lutt‖0 ds ‖∂̃t ξ
n‖0

≤ Cτ 3/2


hr−1

(∫ tn+1

tn−1

‖utt‖2
r+1 ds

)1/2

+
(∫ tn+1

tn−1

‖utt‖2
2 ds

)1/2

 ‖∂̃t ξ

n‖0

≤ Cτ 3

∫ tn+1

tn−1

‖utt‖2
r+1 ds +

n∑
i=n−1

‖∂tξ
i‖2

0. (4.28)

To bound |I n
6 | given in (4.15), we use the triangle and Cauchy–Schwarz inequalities, (2.1), (2.5),

(4.20), and Cauchy’s inequality, to obtain

∣∣I n
6

∣∣ ≤ |(F(tn)u
n − F(tn)W

n, ∂̃t ξ
n)h| + |(F(tn)U

n − F(tn)W
n, ∂̃t ξ

n)h|
≤ ‖F(tn)u

n − F(tn)W
n‖h‖∂̃t ξ

n‖h + ‖F(tn)U
n − F(tn)W

n‖h‖∂̃t ξ
n‖h

≤ C(‖ηn‖h + ‖F(tn)U
n − F(tn)W

n‖h)

n∑
i=n−1

‖∂tξ
i‖0

≤ C
[‖ηn‖2

h + ‖F(tn)U
n − F(tn)W

n‖2
h

] +
n∑

i=n−1

‖∂tξ
i‖2

0. (4.29)

Adding and subtracting ‖ηn‖2
0, (2.4), (3.2), and the Cauchy–Schwarz inequality yield

‖ηn‖2
h ≤ |‖ηn‖2

0 − ‖ηn‖2
h| + ‖ηn‖2

0

≤ Chr+1
∑
K∈Th

‖[ηn]2‖
Wr+1

1 (K)
+ Ch2r+2‖un‖2

r+1

≤ Chr+1
∑
K∈Th

(
r+1∑
j=0

‖ηn‖Hj (K)‖ηn‖Hr+1−j (K)

)
+ Ch2r+2‖un‖2

r+1
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≤ Chr+1
r+1∑
j=0

‖ηn‖j ,Th
‖ηn‖r+1−j ,Th

+ Ch2r+2‖un‖2
r+2

≤ Ch2r+2‖un‖2
r+2. (4.30)

Using the triangle inequality, (3.4), the inverse inequality, (3.2), we obtain

‖ηn‖j ,Th
≤ ∥∥un − un

h

∥∥
j
+ ∥∥un

h − Wn
∥∥

j ,Th
≤ Chr+1−j‖un‖r+1 + Ch−j

∥∥un
h − Wn

∥∥
0

≤ Chr+1−j‖un‖r+1 + Ch−j
(∥∥un

h − un
∥∥

0
+ ‖ηn‖0

) ≤ Chr+1−j‖un‖r+2. (4.31)

Similarly, we get

‖ηn‖j ,Th
≤ Chj‖un‖r+2. (4.32)

Thus (4.29)–(4.32) give

∣∣I n
6

∣∣ ≤ C
[‖F(tn)U

n − F(tn)W
n‖2

h + h2r+2‖un‖2
r+2

] +
n∑

i=n−1

‖∂tξ
i‖2

0. (4.33)

Using (4.9), (4.16), (4.17), (4.21), (4.26)–(4.28), (4.33), and multiplying through by 4τ , we obtain
for n = 1, . . . , Nt − 1,

2
[‖∂tξ

n‖2
h − ‖∂tξ

n−1‖2
h

] + ah(ξ
n+1, ξn+1) − ah(ξ

n−1, ξn−1)

≤ C

(
C1(u)[τ 4 + h2r+2] + C2(u)τh2r+2 + τI n

4 + τ‖F(tn)U
n − F(tn)W

n‖2
h + τ

n∑
i=n−1

‖∂tξ
i‖2

0

)
,

(4.34)

where

C1(u) =
∫ tn+1

tn−1

(‖utttt‖2
r+1 + ‖utt‖2

r+2

)
ds, C2(u) = ∥∥un

tt

∥∥2

r+1
+ ‖un‖2

r+2 + ‖F(tn)un‖2
r+1.

Using Lemma 4.2 and ξ 0 = 0, we get

τ

k−1∑
n=1

I n
4 ≤ C(u)

ε
h2r+2 +

(
Cτ

k−2∑
n=2

‖ξn‖2
1 + ε

k∑
i=k−1

‖ξ i‖2
1 + C‖ξ 1‖2

1

)
. (4.35)

Summing both sides of (4.34) for n = 1, . . . , k − 1, where 2 ≤ k ≤ Nt , using (2.5), (2.6), (4.35),
ξ 0 = 0, and taking ε sufficiently small, we obtain

‖∂tξ
k−1‖2

0 +
k∑

i=k−1

‖ξ i‖2
1 ≤ Cτ

k−1∑
n=1

‖F(tn)U
n − F(tn)W

n‖2
h

+ C(u)

[
τ 4 + h2r+2 + τ−2‖ξ 1‖2

1 + τ

k−1∑
n=0

(‖∂tξ
n‖2

0 + ‖ξn‖2
1

)]
.
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Hence, for τ sufficiently small, the discrete analogue of Gronwall’s inequality and Lemma 4.1
complete the proof.

In the next theorem we prove that the quadrature CNFE solution given by (1.12) and (1.13) is
uniformly bounded and its rate of convergence to the exact solution is optimal in both time and
space.

Theorem 4.4. If h and τ are sufficiently small and τ ≤ C min{hε+d/4, h} where ε > 0 is
independent of τ and h, then

max
0≤n≤Nt

‖un − Un‖m ≤ C(u)(τ 2 + hr+1−m), m = 0, 1.

Proof. It follows from Lemma 3.2 that

‖W‖∞ ≤ C1(u), t ∈ [0, T ]. (4.36)

Using (4.1), the triangle and inverse inequalities, (4.36), Lemma 4.1, and τ ≤ Chε+d/4, we obtain

‖U 1‖∞ ≤ ‖W 1‖∞ + ‖ξ 1‖∞ ≤ ‖W 1‖∞ + Ch−d/2‖ξ 1‖0 ≤ C2(u). (4.37)

Next, we use mathematical induction to prove that

‖Un‖∞ ≤ C3(u), n = 1, . . . , Nt − 1, (4.38)

where

C3(u) = max{C1(u), C2(u)}. (4.39)

It follows from (4.37) and (4.39) that ‖U 1‖∞ ≤ C3(u). Assuming that (4.38) is true for
n = 1, . . . , l, where l is such that 1 ≤ l ≤ Nt −2, we will show that (4.38) is also true for n = l+1.
To this end, the induction hypothesis, (2.1), (2.5), the relation Un − Wn = ξn − ηn + (un − Wn),
(3.2), and (3.4), yield

‖F(ti)U
i − F(ti)W

i‖h ≤ C‖Ui − Wi‖0 ≤ C(‖ξ i‖0 + ‖ηi‖0 + ‖ui − Wi‖0)

≤ C
(‖ξ i‖2

0 + h2r+2‖ui‖2
r+2

)
, i = 1, . . . , l,

and hence, by applying Theorem 4.3 we observe that

‖ξ k−1‖2
1 + ‖ξ k‖2

1 ≤ Cτ

k−1∑
i=1

‖ξ i‖2
1 + C(u)(τ 4 + h2r+2), k = 1, . . . , l + 1. (4.40)

Now, an application to the discrete analogue of Gronwall’s inequality yields

n+1∑
i=n

‖ξ i‖2
1 ≤ C(u)(τ 4 + h2r+2), n = 0, . . . , l. (4.41)

Using the inverse inequality, (4.41), τ ≤ Chε+d/4, and taking h sufficiently small, we obtain

‖ξ l+1‖∞ ≤ Ch−d/2‖ξ l+1‖0 ≤ C(u)(h2ε + h) ≤ C3(u)

2
. (4.42)
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TABLE I. Optimal-order L2 and H 1 convergence rates for r = 1 and h = 1/N = τ .

� = 1 � = 2

N ‖e‖0,∞ R(L2) ‖e‖1,∞ R(H 1) ‖e‖0,∞ R(L2) ‖e‖1,∞ R(H 1)

40 8.11 e−04 7.12 e−02 4.28 e−04 7.12 e−02
80 2.03 e−04 1.99 3.56 e−02 0.99 1.06 e−04 2.00 3.56 e−02 0.99
160 5.07 e−05 1.99 1.78 e−02 0.99 2.66 e−05 2.00 1.78 e−02 1.00
320 1.26 e−05 2.00 8.90 e−03 0.99 6.60 e−06 2.00 8.90 e−03 1.00
640 3.05 e−06 2.05 4.45 e−03 0.99 1.49 e−06 2.14 4.45 e−03 1.00

Using ξ l+1 = U+1 − Wl+1, the triangle inequality, (4.36), (4.39), and (4.42) yield

‖Ul+1‖∞ ≤ ‖Wl+1‖∞ + ‖ξ l+1‖∞ ≤ C3(u)

2
+ C3(u)

2
= C3(u),

which completes the proof of (4.38) by mathematical induction.
Finally, using (4.38) and following the derivation of (4.40) and (4.41), we obtain

n+1∑
i=n

‖ξ i‖2
1 ≤ C(u)(τ 4 + h2r+2), n = 0, . . . , Nt − 1. (4.43)

Sinceun−Un = ηn−ξn, the desired result follows from the triangle inequality, (3.2), (4.43).

V. NUMERICAL EXPERIMENTS

In this section, we apply our fully-discrete CNFE scheme (1.12) and (1.13) to a semilinear example
problem of the form (1.1)–(1.4) in one dimensional space. We take

T = 1, a11(x) = 1, � = (0, 1), u(0, t) = 0 = u(1, t), u(x, 0) = ut(x, 0) = sin πx,

and the inhomogeneous term is

f (x, t , u) = t3u2 + [sin(t) + cos(t)] sin(πx)(π 2 − 1) − t3([sin(t) + cos(t)] sin(πx))2.

In our example, the exact solution is given by u(x, t) = [sin(t) + cos(t)] sin(πx).
It is clear that the nonlinearity of the source term f satisfies the Lipschitz condition locally

only and this is what was assumed in (2.1).

TABLE II. Optimal-order L2 and H 1 convergence rates for r = � = 2 and h = 1/N = τ 3/2.

N ‖e‖0,∞ R(L2) ‖e‖1,∞ R(H 1)

36 2.1267 e−05 8.9566 e−04
49 8.4576 e−06 2.9908 4.8150 e−04 2.0131
64 3.8027 e−06 2.9930 2.8338 e−04 1.9848
81 1.8781 e−06 2.9947 1.7621 e−04 2.0169
100 9.9443 e−07 3.0175 1.1558 e−04 2.0011
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TABLE III. Optimal-order L2 and H 1 convergence rates for r = � = 3 and h = 1/N = τ 1/2.

N ‖e‖0,∞ R(L2) ‖e‖1,∞ R(H 1)

36 5.8815 e−07 6.8205 e−06
49 1.7134 e−07 4.0003 2.6542 e−06 3.0612
64 5.8912 e−08 3.9976 1.1806 e−06 3.0333
81 2.2746 e−08 4.0397 5.8057 e−07 3.0130
100 9.8535 e−09 3.9701 3.0787 e−07 3.0102

In our numerical experiments, for several values of N , we used uniform spatial and time par-
tition with the step size h = 1/N and τ = 1/

√
Nr+1 to check the rate of convergence (R(Hk)) in

the Hk norm for k = 0, 1. We chose the approximation space Sh ⊂ H 1
0 (0, 1) to be the space of

all continuous piecewise polynomials of degree at most r .
Tables I–III show the errors ‖e‖k,∞ = max0≤n≤N ‖un − Un‖k in the Hk norm for k = 0, 1. We

calculated the errors ‖e‖k,∞ using r + 1 Gauss quadrature points on each interval of the finest
spatial mesh.

For a fixed h, we computed U 0 and U 1 by solving (1.13). Then, we computed the sparse
LU-factorization of the time-independent symmetric matrix resulting from (1.12). We used this
factorization in (1.12) to compute Un+1.

In our calculation, we choose the nodes {σj ,K}�
j=1 in (1.11) to be the Gauss quadrature points on

each cell and {wj ,K}�
j=1 are the associated weights. In the current case, our analysis requires � to

be greater than r in order to obtain the quadrature error formula (2.2) which is needed to prove the
optimal-order convergence rates of the quadrature CNFE scheme in the Hk norm for k = 0, 1, see
Theorem 4.4. However, for � = r results in Tables I–III confirm the optimal convergence results
given in Theorem 4.4. Theoretically it is difficult to prove such practically expected results for
semilinear hyperbolic problems. For � = r + 1, all the assumptions which are given in Section
II on the quadrature rule are satisfied, and hence we expect to obtain optimal order convergence
rates in L2 and H 1 norms. Such results are demonstrated numerically below. It is clear from Table
I that for � = r + 1, we obtained better convergence rates and error bounds.
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