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ABSTRACT

A class of nonlinear singular two point boundary value problems is considered and the
existence and uniqueness of the solution is addressed. A Galerkin method with special
basis functions is used to discretize the variational problem and the order of convergence
in energy and uniform norms are shown,

Subject Classification: 63115, 34E05.

Keywords: Singular Differential Equations, Galerkin Method, Limit Point, Limit Circle,
Order of Convergence.

*Address for comrespondence:

KFUPM Box 5046

King Fahd University of Pewroleum & Minerals
Dhahran 31261

Saud: Arabia

Julv 2001 The Arabian Jowernal for Setence and Engincering, Vilume 26, Number 24,

155



156

G K. Beg and M.A. El-Gebeily

A GALERKIN METHOD FOR NONLINEAR SINGULAR TWO POINT
BOUNDARY VALUE PROBLEMS

1. INTRODUCTION
In this work we consider a class of two-point boundary value problems:
L i
-G(pu}+f{r,u]=ﬂ. 0<z<l1
(pu')(07) =0, u(l)=0. (1)
Problems of the form (1) appear in many applications in physics and engineering, for example, see [1-4].

There is a considerable literature on numerical methods for singular boundary value problems. We refer to
our earlier paper [5] for the solution of the two point boundary value problem of the linear type by the Galerkin
method and the references therein. In this paper we extend the results about the convergence and rate of
convergence of the numerical solutions of the linear singular differential equation treated in [3] to a class of
nonlinear problems represented by Equation (1).

We require that the coefficient functions satisfy the following assumptions:

Al. p,w > 0 almost everywhere, % € Lj,.(0,1];

A2 r(z) = f: 1€ L,(0.1) (the class of absolutely integrable functions on (0,1) relative to the weight w);

the problem becomes singular when
% g Ly, ([0,a)) for any a > 0. (2)
This is the type of singularity to be considered in this paper.
In operator form, we rewrite (1) as
Lu+ Fu=0,
where:
Lu=-= (),
with domain D(L) c L2 (0,1) given by:
D(L) = {u € L2(0,1) s u, pu' € ACi(0,1], and i (pu') € Lﬁ,l[{Ll}} \

i

and F is the nonlinear operator defined on L3 (0,1) by:

Fu(z) = f(z,u {-::}} for almost all = € (0, 1).
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Here AC(0,1] denotes the space of functions which are absolutely continuous on any compact subinterval of
(0,1]. It is known that the operator L defined above is self adjoint on L2 (0,1) (see [6].)

This paper consists of three sections besides the introduction. In Section 2 the variational formulation of
problem (1) is undertaken and the assumptions about the class of nonlinear functions to be considered are
stated. In Section 3, a Galerkin method is given for the numerical approximation of the variational problem.

A discussion of the rate of convergence of the method is then presented. Two illustrative examples are given in

Section 4.

2. VARIATIONAL FORMULATION

In what follows, (-, -}w. (- }p. [l ll,, . [Ill, will denote the inner product and the norm in the spaces L3 (0,1) and
L7(0,1), respectively. By V), we denote the space:

Vo={ueLi(0,1):u€ ACw.(0,1], v’ € L}(0,1), u(1) = 0}.

The inner product {-, -}y, in V, is defined by:

1
{u, v}y, =fu u' (1) o' (t) p(t) dt,

and the norm induced by this inner product will be denoted by || ”Vp . It can be easily shown that, if the measure
generated by p is absolutely continuous with respect to the measure generated by w, then V, is a complete
Hilbert space in its norm and that V}, is dense in L2 (0,1). Furthermore, we have the following lemma.

Lemma 1. V, is continuously embedded in L] (0,1).

Proof. Let u € V,, then:

F
Helly

[ [ ([ 5e) v
([ e
(/ | rw) luly = C . o

The following assumptions are related to the class of nonlinear functions [ we allow in this work:

(P8

Bl. Fug e L2(0,1) for some g € Vy;

|Fu — Fuy|

e Jhw s C <oV u,ve Vy;

B2. (
B3. (Fu- Fr,u-v)y27llu-vlfy, >—llu-vlly, YuveV,usv.

The following lemma is a result of assumption B2
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Lemma 2. Suppose u,v € V}, such that Fu — Fv € L2 (0,1), and assumption B2) holds, then:

|Fu— Fu|

|{(Fu— Fv,v }ml{{ﬁ Tha [l = vl [lell,

Proaof.
1
! |Fu - Fu|
fu{Fu—Fu]uwg A WI - v)u|w
'|[Fu-Ful| ' /B VP, .‘
= b |u—u:f oot [ oo

1/2

([_'mu*ﬁ)mf Lu

1Phw e = vl Il - 0

[ =t ([ ste-ot)

|Fu— Ful
Jre —uf

<

Lemma 3. [f assumptions Bl, BE are satisfied then

(1) {Fu,v)w erists ¥ u,v € Vy,

(2) for any fired u € Vy, the mapping v — {Fu, v}y is continuous,

Proof. For u,v €V,

[(Fu, v)ul| € [(Fu = Fuo, v)w| + |(Fuo, v)u

Fu-F
< (Fa=r e u=voly, ol + [1Puall, ol
< Cliu=uolly, llvlly, + VC lIFusll, llvlly, - s

As a result of Lemma 3, the nonlinear functional:
a(u,v) = (u,v)y, + (Fu,v)y, (3)

is well defined on V,. We now define the variational boundary value problem (VBVP) corresponding to (1) as:
given F satisfying B1-B3, find u € V; such that

a(u,v) =0 Vv eV, (4)

It follows, from Lemma 3 and the Riesz Representation Theorem , that there exists an operator B : V, = ¥
defined by:

(Bu,v)y, = (Fu,v)y — ylu, v}y, Yuel,

which has the following properties.
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Lemma 4. B is monotone and hemicontinuous on 1}, .

Proof. Let u,v € V. Then:
{Bu— Bv,u — v}y, = (Fu—Fy,u—v)y —7|u -ulﬁ-. >0,
by assumption B3.

The hemicontinuity of B can be shown as follows. Let u,fi,v € Vj,, t € R, then:

{B(u + t) — Bu, v}y, {Flu+ tu) — Fu,v)y — (i, v}y,

Flu+ti) - Fu =
< o ((EEZ =P e+ 1) il ol  (by Lemma ),
< 11(C+ ) Iy, llvfly, , (by assumption B2),
which goes tozeroas t =+ 0 O

It follows, since 1 + + > 0, that the operator
(1+9)I+B: V=V,
is bijective (see [7]) and therefore the equation
((l+4)+Bju=0 (5)
has a unigue solution in V5. Note that:
(1 + )M + Blu, v}y, = (w,v)y, + (Fu,v)w = alu,v),
and therefore (5) is equivalent to (4).

Next we proceed to show that, under an assumption somewhat stronger than B1, the solution of the VBVP (4)
is equivalent to the solution of the BVP (1). We replace Bl by the assumption

Bl F:V,= H.

The procedure is standard in the case of linear problems. We are going to show that it can be extended to
our class of nonlinear problems, Let

X := {u € V, : v~ a(u,v) is continuous on V}, in the topology of L%, (0,1)} .

Since V, is dense in L2(0,1), then, for each u € X, the linear mapping v — a(u,v) can be extended to a
continuous linear functional G{v) on L2 (0, 1). Thus there exists a unique element, say, Su € L2 (0, 1) such that:

G(v) = alu,v) = (Su,v)  VYVvEV,. (6)
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This gives rise to the (nonlinear) operator:
S:V,cLi(o,1) = Li{0,1),

defined by (6) on D(5) = X .
Lemma 5. If Bl holds, then D(L) € D(S) and for any u € D(L)

Lu+ Fu = 5u.

Proof. Fix u € D(L), then for any v € V,

alu,v) 'I:I.t..l.l':lrp + (Fu,v)y,

[

1 1
- f (pu') vdz + f Fuvwdz (by Lemma 5.2(b) of [5])
L] a
= {Lu+ Fu,v}y = (g, v}u,

where ¢ = Lu + Fu € L2 (0,1). Thus |a{u,v)| < ||gl|,, llv]l, and the mapping v — a{u,v) is continuous in the
topology of L2 (0,1). Se D(L) C D(5).

Also for any u € D(L)
{Su, v}y = alu,v) = {Lu + Fu,v)y YveE W,

Since V}, is dense in L2(0,1), then Su = Lu + Fu. This completes the proof. a

Lemma 6. If B1 holds, then D(S) € D(L).

Proof. Let u € D(S). Then v — a(u, v) is a linear continuous functional on V}, in the topology of L1,(0,1). Also
v~ (Fu,v}, is a continuous linear functional on V;, in the topology of L2 (0, 1). Therefore, v = a(u, v) = (Fu, v}y
is a linear continuous functional on D(L) C V} in the topology of L2,(0,1). But for v € D(L),

{u,vhy, = (u, Lu)y = (Lo, u)w.

Thus v — {Lv, u}y, is continuous on D(L). Therefore v € D(L*) = D(L). This completes the proof, B

Hence, if B1 holds then:
Su=Lu+ Fu,

Yue D(S)=D(L).

Theorem 7. The following two statements are equivalent:

(i)ue D(L) and Lu+ Fu=10

(ii) u € Vp and a(u,v) =0 Yvel,.
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Proof. (i) = (ii) is clear. To show that (if) = (i}, let u € V}, such that a(u,v) = 0. Then v = alu,v) =0 is
continuous in the topology of L2 (0,1). Hence u € D(5) = D(L). Thus:

0=alu,v) = (Su,v) = (Lu+ Fu,v)y YveV,.
This implies that Lu + Fu = 0 (since V}, is dense in L2 (0,1)). O
Corollary 8. Suppose f, satisfies B1, B2, and B3. Then the BVP (1.1 ) has a unique solution, Furthermore,
this solution 15 alse the unigue solution of the VBV P [2.2).
Assumption A2 requires that:
re LL(0,1).

More generally, if r ¢ Lﬁ,[ﬂ, 1) the problem is said to be in the Limit Point case. Thus A2 includes a special
class of problems in the limit point case. We refer to this class as Limit Point one (LP1). If, on the other hand,

r€ L3(0,1),
the problem is said to be in the Limit Circle {LC) case. The following theorem illustrates the trade off that
occurs between weakening the assumptions on F and strengthening the assumptions on r. The proof of the
theorem is similar to that of [3].
Theorem 9. Under the assumptions B1, B2, and BS we have:

(1) (LC) If Fu € LL(0,1) then the solution u of (1.1} is absolutely continuous en [0, 1],
(2) (LP1) If Fu e LF(0,1) then the solution u is absolutely continuous on [0, 1].

3. THE GALERKIN APPROXIMATION AND CONVERGENCE RESULTS

Letm:0=ux¢ <2} <--- < zy41 =1 be a mesh on the interval [0, 1] and for i = 1,2, -+ N define the patch
functions:

rile) fzii€x<a,

rilz) =4 rHz) if 2 <2<z, (7)
0 atherwise,
where:
rilz)= 1,
¥ 1
I.r.,., —i-—]d&

)= —E—, i=23,-,N
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and:
-rl':oi —1'd8
*  pls)

Tisl 1 '
— ds
L-’ p{s}

rilz) = i=12--,N.

Clearly, ry € Vp for i =1,2,--- | N. Define the finite dimensional subspace Vi of V}, by
Viy = span {r; }ix,.
The discrete version of the weak problem (4) reads:
Find u% € Vy such that
a(u®,v) =0 for allv € Vy. {8)

Note that (8) has a unique solution u® € A0, 1]. To see this we note that the operator By : Viy — Vi defined
by

(Byu,v)y, = (Fu, v}y —ylu,vhy, VveWy

inherits the monotonicity and hemicontinuity from its continuous counterpart B. If u is the solution of (4) and
4% is the solution of (8), then:

(1 —u® v}y, + (Fu— Fu® v), =0forallve Vy. (9)

We can now state our results on the convergence of the Galerkin solution u% to the weak solution u of 4.

Theorem 10. (LC, LP1) If the function F satisfies Bl and Fu € L1(0,1), then
[ = uf,. < CVEUzN)IIFul,

where C depends only on the data and f(my) is given by

Tikl Tigl 1
fry) = GE;%J:N f: (j: mtﬂ) w(s)ds. (10)

Theorem 11. (LC, LP1) If Fu € L2(0,1), then

[u€ = uf, < CVerN)(|Fully,-

PG
Theorem 12. (LC) If Fu € L%(0,1) and E:‘% € Li(0,1), then

[«€ - u||_ < CVE(an)||Full,,

where

<i<h J,. plt)

h{-.vr,-..-}:max{f{:rﬁj,nmnx o ([m Idﬂ)zw{s]ds}. (11)
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Proofs of the above theorems are straightforward extensions of their counterparts in [5]. We only need
Lemma 13 below. The following notation is needed to state the Lemma.

Let

N
ué(z) =Y airi(z),

=1

and u' be the Vy-interpolant of the solution u given by:
N
ul(z) = 3" wirila),
=1

where u; = u(z;) and r; is given by (3.1), ¢ = 1,...,N. We note here that u! is the orthogonal projection of u
with respect to the inner product (-, -}y, :

(u—ul ,v)y, =0VveVy. (12)
The following relation is easily checked (using (9) and (12)):
(€ —u! vy, = (Fu— Fu®,v). Vv e V. (13)

Lemma 13.
e
o=l < (14 755 ) Iu-vll, a9

where C and ~ are given by assumptions B2 and BY.

Proof. We note that:

(€ —u! vy, + (Fu— Fu v}, = (Fu - Fu v}, (15)
Now, putting v = u® — u! in 15 we get, using assumptions B2 and B3:

(1) [u® - [y, < Cllu=v'ly, Ju® =o', -
Thus:

“

lu=uClly, < fu—u'lly, +[[u® = u'lly,

v,

-~

c I

4. EXAMPLES

In this Section we give two examples which are solved by the Galerkin method just described above with equal
mesh size h.
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Example 1. Consider the boundary value problem:

5
—I—};{z*u’}‘— (u+ﬁ) =0 0<z<l

2

u'(0) = u(1) =0.

The exact solution i3 knoun:

nl{;r]:-l——ﬁ
1+z2/3 2~

It is seen that ||[u® - u||__ = 0.25109 x 10~2 for h = 0.1 and € = ul|__ =0.254 x 104 for h = 0.01.

Example 2. Consider the boundary value problem:
1
—E[pu'}‘ +flz,u)=0, O<z<l

(pu)(07) = u(1) =0,

HLM={%—ﬂH.

All the assumptions B1-BY are satisfied and therefore by Corollary 6 and Theorem 7 there erits a unique solution
to this problem which is absolutely continuous. We take h = 0.01 and solve by the Galerkin method and the graph
of the solution is shown in Figure 1. The theoretical order of convergence for this example is hlogh.

0.0 5

-0.2

Figure 1. Solution of Ezample 2.
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