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Abstract. AF-rings are algebras over a fietldwvhich satisfy the Altitude For-
mula overk. This paper surveys a few works in the literature on the Krull and
valuative dimensions of tensor products of AF-rings. The first seaidands
Wadsworth'’s classical results on the Krull dimension of AF-domains tdetfgger
class of AF-rings. It also provides formulas for computing the valeadimension
with effect on the transfer of the (locally) Jaffard property. The sdcsection
studies tensor products of AF-rings over a zero-dimensional ringst késults on
algebras over a field are extended to these general constructionhirbhsection
establishes formulas for the Krull and valuative dimensions of tensmiugts of
pullbacks issued from AF-domains. Throughout, examples are o\l illus-
trate the scope and limits of the results.

Introduction

Throughout this paper, all rings and, for a given fig)dll k-algebras are assumed
to be commutative with identity element ahdve finite transcendence degree over
k. For aringA, we shall use Spéel) and MaxX A) to denote, respectively, the
sets of all prime ideals and maximal idealsAfAlso, we will denote byA[n] the
polynomial ringA[ X4, ..., X,,] and byp[n] the prime ideap[ X1, ..., X,,] in A[n],
for anyp € Spec¢A) and positive integer.

A finite-dimensional domait® is said to be Jaffard if dii?[n]) = n+dim(R)
for all n > 1; equivalently, if dinfR) = dim,(R), where dinfR) denotes the
Krull dimension ofR and dim,(R) denotes its valuative dimension (i.e., the supre-
mum of dimensions of the valuation overrings Bf. Since this notion does not
carry over to localizationsk is said to be locally Jaffard iR, is Jaffard for each
p € Spe¢R) (equivalently, hip[n]) = ht(p), V p € SpegA)). The class of Jaffard
domains contains most of the well-known classes of rings involved in diloen
theory such as Noetherian domains, Prifer domains, universallpacite do-
mains, and stably strong S-domains. Analogous definitions are giveahar
paper [L6] for a finite-dimensional arbitrary ring (i.e., possibly with zero-diviso
We assume familiarity with these concepts aslir?] 7, 11, 12, 13, 17, 19, 20, 25,
26, 27, 29, and any unreferenced material is standard a21n28, 30].

Let k£ be a field and let(td) denote the transcendence degree dvef a k-
algebrad. If A is not a domain, then by definitioi4) := max{t(A/p) | p €

Spe¢A)}.
Definition 0.1. A k-algebrad is an AF-ring if it satisfies the Altitude Formula over
k; thatis, hip) + t(A/p) = t(4,), for eachp € SpecA).

Examples and basic properties of AF-rings are provided at the begiohthe
next section. In 1977, Sharp proved B2] that

dim(K; @ Kp) = min (t(K1), t(K2))

for any field extensiong; and K, of k. In 1978, Sharp and Vamos generalized
this result to the tensor product of a finite number of field extensioig88]. In
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1979, Wadsworth extended their results on field extensions to the largsrafia
AF-domains B5]; namely, he proved that ib; and D, are AF-domains, then

dim(D1 ®x Do) = min (dim(D1) + t(D3), (D) + dim(Dy)).

Moreover, he established a formula for dith@,; R) which holds for an AF-
domain D, with no restriction on the ring?. He also proved that for any prime
idealp of an AF-ringA and, for anyn > 1, ht(p[n]|) = ht(p) (i.e., A is locally Jaf-
fard). In [22], Girolami studied the class of AF-domains with respect to the class
of k-algebras which are stably strodgdomains and examined the behavior of the
notion of AF-domain for certain pullback constructions. An upper bouas then
given for the valuative dimension of the tensor product of #walgebras; more
exactly, if A; and A, arek-algebras, then

dimq,(Al Rk Az) < min (dlmv(Al) + t(Az), t(A]_) + dlmq,(Az))

This paper surveys a few works in the literature on the Krull and valudiive
mensions of tensor products of AF-rings. The first section extendisWérth's
classical results on the Krull dimension of AF-domains to the larger cfadso
rings. It also provides formulas for computing the valuative dimensiibn @ffect
on the transfer of the (locally) Jaffard property. The second sectiahies tensor
products of AF-rings over a zero-dimensional ring. Most resultsigebaas over
a field are extended to these general constructions. The third sectiblisbsta
formulas for the Krull and valuative dimensions of tensor productsibpcks is-
sued from AF-domains. Throughout, examples are provided to illugtratecope
and limits of the results.

The three main papers involved in this survey &9 10], which were co-
authored with Samir Bouchiba (University of Meknes) and Florida Girolami-
versity of Rome) and published in 1997/1999.

1 Tensor products of AF-rings over a field

This section is devoted t@]. First it extends some classical results (on the Krull
dimension) known for the class of AF-domains to the class of AF-rings av
field. Then it provides formulas for computing the valuative dimensiote$or
products emanating from AF-rings with effect on the possible tranétbeaotion
of (locally) Jaffard ring to these constructions.

Throughout this sectiohwill denote a field and by a ring we meart-algebra.
Also, algebras (resp., tensor products) are taken over (rekgiivego) k. For the
reader’s convenience, we first recall some basic properties ofrigs-

Remark 1.1 ([22, 35]). Let .A denote the class of AF-rings ovirand letn be a
positive integer. Then:

(i) Any finitely generated algebra and its integral extensions belong to
(i) If Ae A, thenS—1A e A, for every multiplicative subset of A.
(iiiy If Ae A, thenA[n] € A.
(iv) If A1,...,A, e A, thend; ®---® A, € A.

(V) If A1,..., A, € A, thenA; x --- x A, € A.
(vi) If A e A, thenA is locally Jaffard.

(vii) The classA is not stable under factor rings. However,4fis a catenarian
AF-domain, themd/p € A, ¥V p € SpecA).
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1.1 Krull dimension

This subsection aims at extending Wadsworth'’s results on AF-domains tleits
of AF-rings. The first technical result links the transcendence @egfra localiza-
tion of a tensor product to the transcendence degrees of its respsmtiyp@nents.

Lemmal.2.LetA4,,..., A, be AF-rings and lef” € Spe¢A; @ ---® A,). Then
t((Al (RN An)P) = Z t(A7pL)
1<i<n
wherep;, ;== PnA;fori=1,... n.

As an immediate consequence of this lemma, we obtain the following known
result for AF-domains.

Corollary 1.3. Let Dy, ..., D,, be AF-domains and l€® € Spe¢D;1 ® --- ® D,,).
Then
t(D1®@--®@Dyp)p) =t(D1@---@Dy) = > (D).

1<i<n

The following simple statement has important consequences on some of th
following results.

Lemma 1.4.Let A be an AF-ring andp € Spec¢A). Letp, be a minimal prime
ideal of A contained inp such thatt(p) = ht(p/p,). Thent(4,) = t(4,,).

In order to proceed with the main results, let us recall fr@%] the following
functions: Given two ringst and B with p € Spe¢A) andq € Spe¢B), consider
the function

§(p,q) = max{ ht(P) | P € Spe¢A ® B) with PN A=pandP N B = q}.

Given aringA, p € Spe¢A) andd, s integers with 0< d < s, consider the two
functions
A(s,d,p) = ht(p[s]) + min(s,d + t(A/p))

D(s,d,A) = max{A(s,d,p) | p € Spe¢A)}.

The main result of this section provides a formula for the Krull dimensfan o
tensor product.

Theorem 1.5.Let A be an AF-ring andB an arbitrary ring. Then:
(i) o(p.q) = A(t(4,),ht(p), q), for anyp € Spe¢A) andq € Spe¢B).
(i) dim(A ® B) = max{D(t(4,), ht(p), B) | p € Spe¢A)}.

Notice that (i) is the most important part of the above theorem. Its pediafsr
on the above two lemmas after reduction -via localization techniques- to $ke ca
where B is a field. Then, the result upon dith ® B) derives directly from the
definitions ofs, A, andD.

In case botM and B are AF-rings, we get the following more explicit formula
for the Krull dimension.

Corollary 1.6. Let A and B be two AF-rings. Then:
dim(4A®B) = max{ min ( ht(p)+t(A,), t(4,)+ht(q)) | p € SpecA), q € Spe¢B)}.

The general case of AF-rings (» > 2) can be proved by induction onvia
Corollaryl.6and Lemmadl.2 Namely, we have the following result.

Corollary 1.7. Let Ay, ..., A, be AF-rings. Then:

dim(A; @ -+ @ A,,) = max{min (ht(p;) + > t(A,,)),..., | pi € SpecA;)}.
J#i o
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Notice thatD(s,d, A) is a nondecreasing function of the first two arguments
and, hence, one can restrict the formulas in the above three resultsnaxiraal
ideals.

Wadsworth’s well-known resuli3b, Theorem 3.8] on the Krull dimension of
the tensor product ofi AF-domains reads as follows: Lé?,...,D, be AF-
domains withn > 2. Then

dm(D1@---@Dy) = Y t(D;) — max{t(D;) —dim(D)},_,_ .
1<i<n o

This formula does not hold in general for AF-rings, as shown by theviing
example.

Example 18.LetR;, = k[Xl, X, X3](X1)1 Ry = k[Xl, Xz], A1 = R1 X Ry, and
Az = k[X1, X2](x,)- Clearly, A is an AF-ring with din{A;) = 2 andt(A4;) = 3;
and A4, is an AF-domain with dirid,) = 1 and {4,) = 2. By Corollary1.6, one
can check that diffil; ® Ap) =3 S t(A1) +t(A2) —1=4.

The second main result of this section establishes necessary anastiffan-
ditions for a tensor product of AF-rings to satisfy Wadsworth’s af@etioned
formula.

Theorem 1.9.Let Ay,..., A, be AF-rings. Then, the following assertions are
equivalent:

() dm(A1 @ - © A,) = Yoo, 1(A) — max{t(4;) — dim(Ai)}lgign;

(i) For eachi = 1,...,n there existsM; € Max(4;) such thatht(M; ) =
dim(A;,) for somei, € {1,...,n} and, for alli # i,, t(Airs,) = t(4;) &
t(Ai/M;) < t(A;, /M;,).

Next, we give some applications of this result.

Corollary 1.10. Let Ay, ..., A, be AF-rings such that, for eacgh= 1, ..., n, there
existsM; € Max(A4;) with ht(M;) = dim(A4;) andt(A;a, ) = t(4;). Then

dim(A; @ @ A,) = > t(A;) — max{t(4;) —dim(4;)},_ _ .
1<i<n o

Corollary 1.11. Let Ay, ..., A,, be AF-rings such that, for each=1,...,n and
for eachM; € Max(A4;), t(Ain,) = t(4;). Then

dim(A; @@ A,) = > t(A;) — max{t(4;) — dim(A:)}, -

1<i<n
The above corollary recovers Wadsworth’s aforementioned result.

Corollary 1.12 ([35, Theorem 3.8])Let Dy, ..., D,, be AF-domains. Then
dm(D1@---@Dy) = Y t(D;) — max{t(D;) —dim(D;)},_._ .
1<i<n o
Next, a sufficient condition involves the minimal prime ideals.

Corollary 1.13. Let Ay, ..., A, be AF-rings such that, for each=1,...,n and
for each minimal prime idea}; of A;, t(A;/p;) = t(A;). Then

dm(A1® - A,) = Z t(A;) — max{ t(Ai)—dim(Ai)}lgign.

1<i<n

Corollary 1.14. Let Ay, ..., A,, be equicodimensional AF-rings. Then

dim(A;® - ® 4,) = > tA) — max{t(4,) —dim(A)},_,_ .

1<i<n
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It is known [22, Corollary 3.3] that ifA is an AF-ring, then
dm(A® A) =dim,(A® A) <dim(A) +t(A4) = dim,(A4) +t(A).

This result follows also from Corollary.6. Now, applying Theorem.9t0 A @ A
we obtain:

Corollary 1.15. Let A be an AF-ring. Then, the following assertions are equiva-
lent:

(i) dim(A® A) = dim(A) + t(A);

(i) 3 M,N € Max(A) with ht(M) = dim(A), t(Ay) = t(4), andt(4/N) <
t(A/M).

Next, we provide an example of an AF-ringwith dim(A ® A) < dim(A) +
t(4).

Example 1.16.Let K be a field extension of with t(K) = 2 and letd := K x
k[X], whereX is an indeterminate ovér. Then,A is an AF-ring with dinf4) = 1
and {A) = 2. The maximal ideals ofl are (0) x k[X] and K x N with N €
Max(k[X]). Moreover, ht(0) x k[X]) = 0; t(A(g)xk[x]) = 2 =t(A); ht(K x N) =
1=dim(A4);t(4/((0) x k[X])) = 2;and {A/(K x N))=0. So, by Corollaryl.15
we obtain dinfA ® A) < dimA +t(A) = 3.

We will conclude this subsection by an illustrative example which requires the
following technical lemma.

Lemma 1.17.Let A be an AF-ring such that there existq € Spe¢A) with
t(4,) # t(A,). Then, for any AF-ringB, A ® B is not the tensor product of a
finite number of AF-domains.

Example 1.18.For each integen > 1, there exist two AF-ringst; and A, such
that:

(i) dim(A1 ® Ay) =n;
(i) A1 ® Az is not the tensor product of a finite number of AF-domains;

(iii) If, in addition, there exists a non-finitely generated separable extertsib,
then neitherd; nor A; is a finite direct product of AF-domains.

Indeed, leti’ be a separable extensionfofLet V; := K (X)[Y]y) = K(X)+
My, V = K(Y)[X)x) = K(Y)+ M, andV, = K[Y]y)+ M = K + M.
Then,V; andV; are, respectively, one-dimensional and two-dimensional valuation
domains ofK(X,Y). SinceV; andV, are incomparablel’ := V; N V5 is a two-
dimensional Prufer domain with only two maximal ideald; and M>, such that
Ty, = Vi andTy, = V5 [31, Theorem 11.11]. Lef := M;M, andR = T/I.
Then, R is a zero-dimensional ring (and, a fortiori, an AF-ring) with only two
prime idealsp; := M, /I andp, := M>/I. Further, {R/p1) = 1 and {R/p2) = 0.
By Corollary1.15 we have

dim(R® R[n|) =dim((R® R)[n]) =dim(R® R) + n =t(R) +n = 1+n.

Moreover, by Lemmd..17, R ® R[n] is not the tensor product of a finite number
of AF-domains; so it suffices to také := R andA4; := R[n — 1].

Now assume thak is not finitely generated oveér. SOK ® K is a reduced
[36, Theorem 39], zero-dimensiond&d, Theorem 3.1], and non-Noetheriadd|
Theorem 11] ring. Then Spék ® K) is infinite [34, Lemma 0]. Next, letd :=
K ® R. SinceA is an integral extension &, it is zero-dimensional. Moreover,
there exist two prime ideals of, P, andP, suchthat’, "R = p; and P, N R =
p2 With t(A/P;) = 1 and tA/P;) = 0. SinceK is the quotient field ofR/p;
and SpetK @ K) is infinite, by [35, Proposition 3.2], Spée!) is infinite. So
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A is not a finite direct product of AF-domains and the same holdsifef. By
Corollary1.15 dim(A® A[n]) = dim((A® A)[n]) = dim(A® A)+n = t(A)+n =
1+ n. Moreover, by Lemmd..17, A ® A[n] is not the tensor product of a finite
number of AF-domains. So it suffices to take := A and 4, = Aln — 1],
completing the proof of the example.

1.2 Transfer of the (locally) Jaffard property

In this subsection, we first establish the transfer of the locally Jaffarplepty in
some context of tensor products. Then, we give some formula®fopating the
valuative dimension of the tensor product of an AF-ring and an arbitrag. We
conclude with the fact that the tensor product of an AF-ring and ardafiiag is
not necessarily a Jaffard ring.

Next, we announce the main result of this subsection. Notice that the tensor
product of two AF-rings is locally Jaffard (since it is an AF-ring).

Theorem 1.19.Let A be an AF-ring andB a locally Jaffard ring. ThenA @ B is
a locally Jaffard ring.

The proof of this result lies on a very important lemma which correlates the
height of a prime ideal oA ® B to its traces omd and B via the transcendence
degrees; namely, we have:

Lemma 1.20.Let A be an AF-ring andB an arbitrary ring. LetP € Spe¢A ® B)
withp := PN Aandq := PN B. Then

ht(P) +t((A® B)/P) = t(4,) + ht(q[t(4p)]) + t(B/q).

Next, we give some applications of Theordmi9 The first one establishes
a formula for the valuative dimension df ® B where A is an AF-ring. To this
purpose, one should first examine the variation of the fundiidmetweenB and
its associated polynomial rings.

Lemma 1.21.Let A be an AF-ring,B an arbitrary ring, andp € SpecA). Then,
foranyn > 1, we have

D(t(Ap), ht(p), B[n]) = D(t(A,) + n, ht(p) +n, B).
The next result provides a formula for the valuative dimension.

Corollary 1.22. Let A be an AF-ring andB a ring with finite valuative dimension
> 1. Then, for any > dim,(B) — 1, we have

dim, (A ® B) = max{ ht(q[r]) + min (t(4,), ht(p) + t(B/q)) }
where(p, ¢) ranges ovelSpe¢A) x Spe¢B).
The special case wherkis an AF-domain yields a more simplified formula.

Corollary 1.23. Let A be an AF-domain an@® a ring with finite valuative dimen-
sion> 1. Then, for any- > dim,(B) — 1, we have

dim, (A ® B) = max{ ht(g[r]) + min (t(A),dim(A) +t(B/q)) }
whereq ranges oveiSpedB).
The next two results feature special contexts where the tensor piedadfard.

Corollary 1.24. Let A be an AF-domain ané a ring such thatdim, (B) < t(A)+
1. Then,A ® B is a Jaffard ring.



38 Salah Kabbaj

Recall that, for any ring3 of valuative dimension 2, the ring[X] is locally
Jaffard [L6, Proposition 1(ii)]. Also, 1, Example 3.2] is an example of a Jaffard
ring B that is not locally Jaffard buB[X] is locally Jaffard.

Corollary 1.25. Let A be an AF-domain an® a Jaffard ring such thaB[X] is
locally Jaffard. ThenA @ B is a Jaffard ring.

We close this section with an example where the tensor product of an AF-
domain and a Jaffard ring is not necessarily a Jaffard ring. This shbat a
similar result to Theoremi.19 does not hold, in general, for the transfer of the
Jaffard property.

Example 1.26.We deduce this example from][ Let Z1, Z,, Z3, Z4 be four in-
determinates ovek. Let L := k(Z1, Zo, Z3, Z4) andVy = k(Z1, Zo, Z3) [Z4](Z4).
Then,V; is a one-dimensional valuation ring bfwith maximal ideallM; := Z4V;.
Let V' be a one-dimensional valuation overringid¥,)[Z», Z3| of the formV” :=
k(Z4) + M’ andV’, = k‘[Z4](Z4) + M’ =k + M), WhereMé = Z4k[Z4](Z4) + M.
So,Vj is a two- dimensional valuation ring. Now, [€t= k(Z>, Z3, Za) [Zﬂ(zl> =
k(Z3, Z3, Z4) + M, with M = Z,V, andM, = Mé + M. Then,V, = VZ’ + M =
k + M is a three-dimensional valuation ring.

We claim thatV;, and V, are incomparable. Otherwis&; c V1 and hence
V1= (Vo)a. S0, M is a divided prime ideal of,. That is,Z4V1 = My = MVsy,.
Sol= Z4Z4‘1 € MV = M, the desired contradiction. Now; andV, have
the same quotient field. By [31, Theorem 11.11]S := V3 N V5 is a three-
dimensional Prifer domain with only two maximal ideal§, and N,, such that
SN1 =W andSNz = V5. Next, letF = k(Zl), f VL — k(Zl, Z, Zg) be the
natural ring homomorphism, ard := f~Y(F) = F + M. Letg: S — S/N; =
Vi/N1 = k(Z1, Z2, Z3) be the natural ring homomorphism aid:= g—1(F). We
haveB = DNS = DNV, and din{B) = dim(S) = 3. Moreover, by 1, Theorem
2.11], we obtain

dim, (B) = max{ dim,(S),dim,(F) 4 dim,(Sy,) +t.d.(S/N1: F)} = 3.

Therefore, B is Jaffard. SinceB = D n 1, and Vi, V5 are incomparable, it
follows that B,, = D and B,, = V,, where{ni,n,} = Max(B). Moreover,
ht(ni[s]) = ht(n1Bn,[s]) = ht(M;[s]), for any positive integes. SinceV; is Jaf-
fard, by 5, Theorem 1.7], hi (Ma[s]) = hty, (My) + min(s, 2). Then h{ny) =
1, ht(nl[Xl]) = 2, and h(nl[Xl,Xz}) = 3; t(B/nl) = t(D/Ml) = 1, and
t(B/n2) = t(V2/Mz) = 0.

Let A := k(X). By Theoreml.5, we have

dim(A®B) = D(t(A4),0, B) = max{ ht(¢[X1])-+min (1,t(B/q)) | ¢ € Spe¢B)}.

For g := ny, ityields h{nq[X1]) + min(1,t(B/n1)) = 2+ 1 = 3; for ¢ := ny, it
yields hi{n,[X1])+min(1,t(B/n2)) = ht(nz) = 3, and htg[X1])+min(1,t(B/q)) <
3 for every prime idea} of B contained inn,. Consequently, dift @ B) = 3.
By Corollary1.22 dim,(A ® B) = max{ ht(q[X1, X2]) + min(1,t(B/q)) | q €
SpecB)}. Forq = na, itis ht(ni[X1, Xo]) + min(1,t(B/n1)) = 3+ 1 = 4.
Therefore, dim(A® B) = 4 # dim(A® B). Consequentlyd ® B is not a Jaffard
ring, completing the proof of the example.

2 Tensor products of AF-rings over a zero-dimensional ring

This section is devoted t®]. Its purpose is to extend all the known results on
the dimension of tensor products of AF-rings over a field to the genesd of
AF-rings over a zero-dimensional ring.

Throughout this sectiori? denotes a zero-dimensional ring, and algebras (resp.,
tensor products), when not specifically marked, are taken ovey. (medative to)
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R. We denote by(A4, \4) an algebrad and its associated ring homomorphism
Aa 1 R — A; and, by)*, the associated spectral map Spec— Spe¢R). No-
tice that for any prime ideaP of A, \;*(P) is a maximal ideal oR. So, we define
the transcendence degree of the algebraver R as follows

t.d(An, R)=max{td (4/P: R/ ;}(P))| P € Spe¢A)}.

We write {A : R) or just { A) as an abbreviation ford.(A :\, R), when there is
no ambiguity. All along this section, we consider only algekltas) ) such that
t(A) < oo, which also ensures that dim) < co. If A is an integral domairy 4
denotes Keih4).

First of all, observe that the transcendence degree of an algettepends on
its R-module structure, as shown by the next example.

Example 2.1.Let R := k(X) x k and A := k(X), wherek is a field. Consider
the two ring homomorphisms, : R — A and\; : R — A defined by\;(z,y) =
z and A\z(z,y) = y. Thentd.(4 :, R) = t.d.(k(X) : k(X)) = O whereas
td(A4d:, R)=td(kX):k) =1

The following lemma provides simple generalizations of well-known faats fo
algebras over a field.

Lemma 2.2.Let (A, \4) be an algebraP € Spe¢A), andp := A} (P). Then:
(i) ht(P) +t(A/P:R) <t(Ap: R) =t((A/pA)p/pa : R).

(i) ht(P) = ht(P/pA).

(i) ht(P[n]) = ht((P/pA)[n]), for eachn > 1.

(iv) If Ais locally Jaffard, then soigl/qA, for eachq € SpecR) with ¢A # A.

2.1 Tensorially compatible algebras

Let (A1, A1) and (42, \2) be algebras. For = 1,2, we denote byu, : A; —
A1 ® A, the canonicald;-algebra homomorphism. The algebta @ A,, when
not specifically indicated, hasa, .4, = 1 0 A1 = pz o X2 as its associated ring
homomorphism. Finally, let

I'(Al, Az) = {(Pl, Pz) S Spe(§A1) X Spec(Az) | )\Il(Pl) = )\Z_l(Pz)}.

We are interested in algebrag;, \;) and( Az, \2) such thatd; ® A, # 0, and
call such algebragensorially compatible The next result provides some elemen-
tary and useful characterizations of tensorially compatible algebrasa Fwre
general result, we refer the reader 24,[Corollary 3.2.7.1].

Proposition 2.3.Let (A1, A1) and (42, \2) be algebras. Then, the following asser-
tions are equivalent:

() (A1, A1) and(Az, \p) are tensorially compatible;
(i) Aj(SpecAr)) N \;(SpedAy)) # 0;
(iiiy 3 Py SpecA;) such that\y *(Py) Az # Ay;
(iv) 3 P,SpecA,) such that\, *(P,) A # As;
(v) 3pSpecR) such thappA; # Ay andpA, # Ay;
(vi) Ker(A1) + Ker(A2) # R.
A similar result holds for any finite number of algebras, as shown below.

Proposition 2.4.Let (A3, \1), ..., (A, A\,) be algebras. Then, the following as-
sertions are equivalent:
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() Ai®---®A, #0
(i) Ai(SpecAi)) N A3(Specdz)) N---N A (SpecA,)) # 0;
(i) 3 pSpecRr) such thapA; # A;, foreachi =1,2,... n.
The next result establishes an analogue3&) Proposition 2.3].
Proposition 2.5.Let (A3, A1) and(Az, \,) be algebras andP;, %) € Spe¢A;) x

SpecAy) with AT (P1) = A\, H(P2) = p. LetQ = {Q € Spe¢A; ® 4,) |
1; Q)= P;, i =12}. Then

- . . . . Ap Ap,
(i) Qis lattice |somorph|ctdBpec(TAlPl B PZA;)_

(i) @ € Qisminimal inQ if and only ift((A1® A2)/Q) = t(A1/P1) +t(A2/ P5).
(i) If Q, € SpedA; ® Ay) andp; 1(Q,) 2 Pi (i = 1,2), then3 Q € Q such that
Q C Qo.

Follow two applications of the above result, which extend two known results
on algebras over a fiel®§] to R-algebras.

Corollary 2.6. Let (A1, A1) and (42, X2) be tensorially compatible algebras and
let @ € Spe¢A; ® Ay). Then

ht(Q) > ht(1; 7(Q)) + ht(1; 1(Q)).
Corollary 2.7. Let (A1, A1) and(A,, \;) be tensorially compatible algebras. Then
t(Al ® Az) = maX{ t(Al/Pl) + t(Az/Pz) | (]3]_7 Pz) S F} < t(Al) + t(Az)

Let (A1, A1) and (42, \2) be tensorially compatible algebras. Clear(ydt @
Ap) =t(A1) +1(Az) if and only if there exist§ Py, P2) € T with t(A1) = t(A1/P1)
and (A4,) = t(A42/P»). The second condition holds, for instancedif and A, are
integral domains or if Spé&) is reduced to only one prime ideal. In general, the
equality fails as it is shown by the next example. Moreover, wRés a field, we
have dinfA; ® Az) > dim(A;) + dim(Ay) [35, Corollary 2.5]. This is not true, in
general, in the zero-dimensional case, as shown below.

Example 2.8.Let R := R x R, 4; := RandA, := R x R[X]. Consider the two
ring homomorphisma; : R — Aj and); : R — A, defined by\i(z,y) = = and
A2(z,y) = (z,y). Clearly, A; and A, are tensorially compatible. We claim that

t(Al ® Ap) ; t(Al) + t(Az) and din’(Al ® Ap) ; dim(Al) + dim(Az).

Indeed, one can easily see thatt) = t(R :y, R) = t.d.(R : R) = 0, and
t(42) = t(R x R[X] :\, R) = max{t.d.(R:R),t.d.(R[X]:R)} = 1. Moreover,
by Corollary2.7, t(A; ® A) = t(A1) +t (A2/(0xR[X])) = t.d.(R: R)+t.d.(R:
R) = 0. It follows that

dlm(A1 & Az) < t(Al ® Az) =0 ; t(Al) + t(Az) = dlm(Al) + dlm(Az) =1

completing the proof of the example.

2.2 Krull dimension

This subsection investigates the Krull dimension of tensor products afirgfs-
over zero-dimensional rings. We first extend Wadsworth’s definitioAFerings
over fields to AF-rings over zero-dimensional rings. Recall #haenotes a zero-
dimensional ring and algebras are taken aver

Definition 2.9. Under the above notation, an algelorg A 1) is an AF-ring if

ht(P) +t(A/P) =t(Ap), V P € SpecA).
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It is worthwhile observing that this notion of AF-ring is independent of the
structure of algebra defined by the ring homomorphismindeed, letd be an al-
gebraand lek and)\’ be two ring homomorphisms defining two different structures
of algebra overz on A. Let P € Spe¢A) andr : A — A/ P be the canonical ring
homomorphism. Lep := Ker(w o \) = A~1(P) andq := Ker(r o X') = N ~1(P).
One can regardk/p and R/q as subfields oA/ P. Letk := R/pN R/q. On one
hand, we have

t(A/P:\ R)=t.d.(A/P:R/p) =t.d.(A/P: k) —t.d.(R/p: k)
and
t(A/P:x R)=t.d.(A/P:R/q) =t d.(A/P : k)—t.d(R/q:k).
On the other hand, we have
t(Ap n R) = max{t.d(4/Q:R/p)|Q € SpedA) andQ C P}
max{t.d.(A/Q: k)| Q € Spe¢A) andQ C P} —t.d.(R/p: k)

and
t(Ap v R) = max{t.d(4/Q:R/q)|Q € Spec¢A) andQ C P}
= max{t.d(4/Q:k)|Q € Spe¢A)andQ C P} —t.d.(R/q: k).

It follows that (AP 5\ R) — t(A/P A R) = t(Ap Y R) — t(A/P Y R) That iS,
(A, ) is an AF-ring if and only if(A, \') is an AF-ring.

Next, we provide some examples and basic properties of AF-rings.

Lemma 2.10.Let R be the class of AF-rings (oveR) and letn be a positive
integer. Then:

(i) A € R < A/pAis an AF-ring over the field?/p, V p € Spe¢R) with
pA #£ A.

(i) Any finitely generated?-algebras and its integral extensions belongio
(i) If A € R,thenS—tA € R, for every multiplicative subsét of A.

(iv) If A€ R,thenAn] € R.

(v) If A1,..., A, € R and are tensorially compatible, thety @ --- ® A,, € R.
(vi) If Ap,..., A, e R, thenA; x --- x A, € R.
(vii) If A e R,thenA is locally Jaffard.

Next, we establish adequate analogues of the main results stated in Semtion
the dimension of tensor products of AF-rings over a field. The firstirgsovides
a formula for the Krull dimension of the tensor produttx B, where A is an
AF-ring.

Theorem 2.11.Let A be an AF-ring andB an algebra withA @ B # 0. Then
dim(A®B) = max{ ht(Q[t(Ap)])+min (t(Ap),ht(P)+t(B/Q)) | (P,Q) € T(A,B)}.

It is worthwhile noting that dirfid @ B) depends on th&-module structure of
A andB, as shown by the next example.

Example 2.12.Let (A, \4) be an AF-ring and B, Ap) an algebra with dirpd @
B) # 0. Letp € Spe¢R) andr : R — R/p be the canonical ring homomorphism.
Ononehand,lehy; : Rx Rx R — R/px Aand\, : Rx RXx R — R/px B
be ring homomorphisms defined by(z,y, z) = (7(z), Aa(y)) andXz(z,y, z) =
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(m(x),AB(2)). Itis easily seen thdt(R/p x A,R/p x B) = {((0) x A, (0) x
B)}. By Theorem2.11, the dimension of the tensor product of tRex R x R-
algebraq(R/p x A), A1) and((R/p x B), \2) is equal to 0. On the other hand, let
A, " Rx R x R — R/px B be aring homomorphism defined By(z,y,z) =
(m(z), Ag(y)). By Theorem2.11, the dimension of the tensor product(©f/p x
A), A1) and((R/p x B), \,) is equal to dintA ® B) # 0.

The next corollary handles the special case of domains.

Corollary 2.13. Let(A, A 4) be an AF-domain an@B, A z) an algebra withdim( A
B) #0. Sett :==1t(A), d:=dim(A), andp, := Ker(A4). Then
Q

dim(A® B) = max{ ht(Q[t]) +min (t,d+t(B/Q)) | Q = W Spec(

S

paB
If, in addition, B is a domain, then

dim(4 ® B) = max{ ht(Q[t]) + min (t,d + t(B/Q)) | Q € Spe¢B)}.

The next main result extends Theordn® to the zero-dimensional case, by
establishing necessary and sufficient conditions for a tensor protlA&trings to
satisfy Wadsworth’s formula on AF-domains over a fie38,[Theorem 3.8].

Theorem 2.14Let( A1, A1), ..., (A, \,) be tensorially compatible AF-rings. Then,
the following assertions are equivalent:
() dm(A1 @ - © A,) = 210, t(A) — max{t(A;) — dim(4;)

@ }1gign;

(i) For eachi = 1,...,n there existsM; € Max(4;) with \{ (M) = --- =
A Y(M,,) such thatht(M;,) = dim(A;,) for somei, € {1,...,n} and, for all

n

i 7& io, t(A7M7) - t(Aq) & t(Az/Mz) S t(A1o/Mzo)

Corollary 2.15. Let (A1, A1), . .., (4, \,,) be tensorially compatible AF-rings. If
anyone of the following conditions holds:

(i) For eachi = 1,...,n there existsM; € Max(4;) with \;}(My) = --- =
Ail(Mn) such tha'lht(Ml) = dlm(Al) andt(Ai]ui) = t(Al)

n

(i) If My, ..., M, are maximal ideals, respectively, 4f, . .., A,, with /\1‘1(M1) =
ce = )\;l(Mn), thent(Ai]ui) = t(Al) fori = 1, RN

(iii) If Py, ..., P, are minimal prime ideals, respectively,4f, . . ., A, with \{ *(Py) =
= XYP,), thent(A;/P,) =t(A;) fori=1,...,n

(iv) Ag,...,A, are equicodimensional,
then
dim(A; @@ A,) = > t(4;) — max{t(4;) — dim(A

1<i<n

7) }1§i§n'

The special case of AF-domains reads as follows.

Corollary 2.16. Let(Dq, A1), - - -, (Dn, A ) be tensorially compatible AF-domains.
Then

dm(D1@---@Dy) = Y (D) —max{t(D;) —dim(D;)},_,_ .
1<i<n o
The special case of ® A is given below.

Corollary 2.17.Let (A, A4) be an AF-ring. Then, the following assertions are
equivalent:

(i) dim(A® A) = dim(A) + t(A);

(i) 3 M,N € Max(A) with A\;1(M) = A\ *(N) such thatht(M) = dim(A),
t(Ax) =t(A4), andt(A/N) < t(A/M).
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2.3 Transfer of the (locally) Jaffard property

Theoreml.19states that ifd is an AF-ring over a field: and B is a locally Jaffard
k-algebra, themd @ B is locally Jaffard. The main result of this subsection extends
this result to AF-rings over a zero-dimensional ring.

Theorem 2.18.Let A be an AF-ring (overR) and B a locally Jaffard R-algebra
with A ® B # 0. Then,A ® B is locally Jaffard.

The next result asserts that Girolami’s inequality on the valuative dimensio
[22, Proposition 3.1] holds in the zero-dimensional case.

Proposition 2.19.Let A and B be tensorially compatible algebras. Then
dim, (A1 @5 A2) < min (dim, (A1) 4 t(A2), (A1) +dim,(A42)).
The next result handles the case where one of the two algebras is angAF-

Corollary 2.20.Let A be an AF-ring andB an algebra withdim,(B) > 1 and
A® B # 0. Then, for any > dim,(B) — 1, we have

dim, (A®B) = max{ ht(Q[r])+min (t(Ap), ht(P)+t(B/Q)) | (P,Q) € T (A, B)}.
If Aisan AF-domain, we get the following two results.

Corollary 2.21. Let(A, A1) be an AF-domain an@B, A z) an algebra withdim, (B) >
land A ® B # 0. Then, for any > dim,(B) — 1, we have

dim, (A ® B) = max{ ht(Q[r]) + min (t(4),dim(4) + t(B/Q))}
whereQ ranges over the prime ideals & such that\ ;(Q) = Ker(\4).

Corollary 2.22. Let A be an AF-domain and an algebra withA @ B # 0. If
dim,(B) < t(A) + 1, thenA ® B is a Jaffard ring.

We conclude this section with the following observation. Uet,; denote the
reduced ring associated to a rifg Then, tA : R) = t(Ayeq : Ryeq), fOr any
R-algebraA. Further, if(A, X\ 4) and(B, Ap) are R-algebras, theQA ® g B)cq =
(Ared ®R,., Bred)rea DY [24, Corollary 4.5.12]. Thus, one may assume tRas
absolutely flat andA, A4 ) and(B, Ap) are reducedr-algebras.

3 Tensor products of pullbacks issued from AF-domains

This section is devoted td ()], which establishes formulas for the Krull and val-
uative dimensions of tensor products of pullbacks issued from AFad@mn To
this purpose, we use previous investigations of the prime ideal strudtuegious
pullbacks, as ind, 3, 4, 6, 12, 14, 15, 16]. Moreover, in R3], a dimension formula
for the tensor product of two particular pullbacks was established aodjeature
for more general pullbacks was raised; in this section, this conjectuesasved.

Throughout,k will be a field andC will denote the class of (commutativé)
algebras with finite transcendence degree avéiigebras (resp., tensor products),
when not specifically marked, will be taken over (resp., relativé:1o)

Let T be a domain) a maximal ideal off", K its residue fieldy : T — K
the canonical surjection, ardla proper subring ok’. Let R be the pullback issued
from the following diagram of canonical homomorphisms:

R:=¢ YD) — D
!

(0) s
T * K=T/M
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Recall, from [Lg], that M = (R : T) andD = R/M; and forp € SpeqR), if
M ¢ p,then3! ¢ € Spe¢T) such thayN R = p andT,, = R,,. However, ifM C p,
then3! ¢ € Spe¢ D) such thap = ¢~1(¢) andR,, is a pullback determined by the
following diagram

R, — D,
\ \

TM — K

with ht(p) = ht(M) + ht(¢). Recall also, from1, 14, 15], that
dim(R) = max{ dim(T'),dim(D) + dim(Tx) }
and
dim, (R) = max{ dim,(T), dim,(D) + dim,(Ta;) + t.d.(K : D)}.

As for the dimension of the polynomial ring, we have the following lowerrizbu
which turned to be useful for the current study

dim(R[n]) > dim(D[n]) + dim(Tas[n]) + min (n,t.d.(K : D))

where the equality holds if is locally Jaffard with htA/) = dim(T").

3.1 Krull dimension

Recall that a pullbackk of type O is an AF-domain if and only i’ and D are
AF-domains and.tl.(K : D) = 0 [22]. A combination of this result with the main
result of this subsection allows one to compute dimensions of tensorgisoftu
a large class of algebras (that are not necessarily AF-domains).

The main theorem of this section relies on the following preliminaries which
are important on their own. The next two lemmas deal with extensionsiragpr
ideals ofR to polynomial rings over pullbacks.

Lemma 3.1.Let R be a pullback of typé] and n a positive integer. For any
p € Spe¢R) with M C p, we have

ht(p[n]) = ht(p[n]/M[n]) + ht(Mn]).

Lemma 3.2.Let R be a pullback of typ&] such thatr,; and D are locally Jaffard
and letn be a positive integer. For any e Spe¢R) with M C p, we have

ht(p[n]) = ht(p) + min (n,t.d.(K : D)).

The next two lemmas deal with the extensions of prime ideals to the tensor
products.

Lemma 3.3.Let A, B € C such thatB is a domain. For any € SpegA), we have
ht(p @ B) = ht(p[t(B)]).

Lemma3.4.LetA, B € C such thatB is an AF-domain. For any € Spe¢A® B)
withp := P n A, we have
hi(P) = ht(p ® B) + ht(——)
- p@ B’

Let us fix notation for the rest of this section. Lt and R, be two pullbacks
of type O issued from the:-algebras € C), respectively(T1, D1, K1 = T1/M;)
and (T, D2, Ky = T»/M>). Fori = 1,2, setd;, := dim(T;), d; = dim(D;),
t; == 1(Ty), r; == t(K;), ands; := t(D;). Also, we will use the functions(p, q)
andD(s, d, A) as defined in Sectioh.
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Lemma 3.5.Assumel; and T, are AF-domains. For anyp;, p2) € SpecR;) x
Sped Ry) with M, ¢ p; and M, ¢ p,, we have

(p1, p2) = min (ht(p1) + t2,t1 + ht(pz)) < min (dy + t2,t1 + do).

Lemma 3.6.Assumé’; and T, are AF-domains. For any’ € Spec¢R; ® R,) with
M, Cp1:=PnNnRiandM; ¢ p, := PN Ry, we have

L)
My ® Ry’

Next, we state the main theorem of this subsection.

Theorem 3.7.Assumél}, T», D1, and D, are AF-domains such that(M;) = dy
andht(M3) = dp. Then

dim(R; ® Rz) = max{ ht(]Vfl[tg]) + D(Sl, &, Ry), ht(Mz[tl]) + D(s2, d/z, Rl)}.

ht(P) = ht(Mi[t,]) + ht(

Itis an open problem to compute dif®y @ Ry) if only T3 (or 13) is assumed to
be an AF-domain. However, if both are not AF-domains, then the afwowasula
does not hold in generaBh, Examples 4.3].

The formula stated in the above theorem matches Wadsworth’s formula in th
particular case wherg; and R, are AF-domains. Indeed, for= 1,2, if R; is an
AF-domain, then so arg andD; andr; = s,. Moreover, by 1], n; ;== dim(R;) =
d; + d.. So, the above theorem yields

dlm(Rl ® Rz) = max{ ht(Ml[tz]) + dlm(Dl ® Rz), ht(Mz[t]_D + dlm(Rl ® Dz)}
= max{d1 + min(ng + s1,t2 + d&), do + min(nl + s9,t1 + dlz)}
= max{ min(n2 +r1+dy,tr + dll + dl), min(nl + 1o+ do,t1 + d/2 + dz)}
= min(ty + np, 12 + ny), as desired

3.2 Valuative dimension

Recall for convenience, that the valuative dimension is stable undeandidjo of
indeterminates; i.e., dipiR[n]) = dim,(R) + n, for any ring R and any positive
integern [25, Theorem 2]. However, the problem of computing the valuative di-
mension of the tensor product of two algebras is still elusively oper2dn Giro-
lami established a very useful upper bound for such an invariang mactly, she
proved that ifA; and A, are algebras, then

dimq,(Al Rk Az) < min (dlmv(Al) + t(Az), t(A]_) + dlmq,(Az))

The goal of this subsection is to compute the valuative dimension for a large
class of tensor products of algebras arising as pullbacks issued ffredoains
(and where the pullbacks are not necessarily AF-domains). To thmogpe the
next two preliminary results establish the transfer of the notion of AF-dotoaa
polynomial ring over an arbitrary domain and over a pullback, respgti

Lemma 3.8.Let A be a domain¢€ C) and letn be a positive integer. Ther[n] is
an AF-domain if and only ifit(p[n]) + t(A4/p) = t(A), V p € SpecA).

Lemma 3.9.Let R be a pullback of typé&l such thatT" and D are AF-domains.
Then, the polynomial rin@[t(K) — t(D)] is an AF-domain.

Next, we present the main result of this subsection. Similarly to the previous
subsection, we consider two pullbacks and R, of type [ issued, respectively,
from (Tl, D, Ky = Tl/]Vfl) and (Tz, Dy, Ky = Tz/]sz).

Theorem 3.10.Assumel’y, T», D, and D, are AF-domains such thdtt(M;) =
dim(71) andht(M2) = dim(7%). Then

dim, (Rl ® Rz) =min (dlmv (Rl) + t(Rz), dimq,(Rz) —+ t(Rl)).
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3.3 Some applications and examples

This subsection presents some applications of The@r&and Theoren3.1Q The
first result features mild assumptions, on the transcendence defreasensor
product of pullbacks issued from AF-domains to inherit the Jaffaop@nty. As
above, we consider two pullbacky and R, of type [ issued, respectively, from
(Tl,D]_,K]_ = Tl/Ml) and (Tz,Dz,Kz = Tz/Mz); and, for; = 1, 2, we sett; ;=
t(7;), ri == t(K;), ands; = t(D;).

Theorem 3.11.Assumely, 1>, D1, and D, are AF-domains such that/; is the
unique maximal ideal cf} with ht(A/;) = dim(71) and M; is the unique maximal
ideal of T with ht(A1,) = dim(7%). Then, the following assertions are equivalent:

() R1® Ry is a Jaffard ring;
(ii) Either“r; —s1 <tp,andry — sy < s1"0r“rp, — sy < tgandry — s; < sp."

The next result states, under weak assumptions, a formula for thledinen-
sion similar to the one of Theoreg7. One may regard this result as an analogue
of [6, Theorem 5.4] (alsol], Proposition 2.7] andlj, Corollary 1]) in the special
case of tensor products of pullbacks issued from AF-domains.

Theorem 3.12. Assumely, T», D;, and D, are AF-domains such thatt(1;) =
dim(71) andht(M;) = dim(7%). Suppose that eithe < r, — s2 0 sp < r1 — s1.
Then

dim(R; ® Rz) = max{ ht(MﬂtzD +dim(D;® Rz), ht(]Vfg[tl]) + dim(Rl & Dz)}.
The next result handles the spacial case wheb- R».

Corollary 3.13. Let R be a pullback of typ&] such thatT" is an AF-domain with
ht(M) = dim(T") and D is a Jaffard domain. Set:= t(7'). Then

dim(R ® R) = ht(M|[t]) + dim(D ® R)
If, in addition,t. d.(K : D) < t(D), then
dm(R® R) = dim,(R® R) =t + dim,(R).

We close with some illustrative examples. The first example illustrates the
fact that, in Theoren3.7 and Corollary3.13 the assumption “lif\/;) = dim(7;)
(1 =1,2)" is not superfluous.

Example 3.14.Let K be an algebraic extension &f T := S~*K[X,Y], where
S:=K[X, Y]\ ((X)U(X -1Y)),andM := S~1(X). Consider the pullback
R of type O issued from(T,k(Y),T/M = K(Y)). SinceS™'K[X,Y] is an
AF-domain andk(Y) ¢ K(Y) is algebraic, ther is an AF-domain 22]. So,
dim(R®R) = dim(R)+t(R) = 2+2 = 4 by [35, Corollary 4.2]. Now, htA/[2]) =
ht(M) = 1 and dinfk(Y) @ R) = min(2,1 + 2) = 2. It follows that htM[2]) +
dim(k(Y) ® R) = 3#dim(R® R).

Next, we show how one can use Theor8mto compute the Krull dimension
of the tensor product of two algebras for a large class of algebrashvalne not
necessarily AF-domains).

Example 3.15.Consider two pullback®; and R, of type [ issued, respectively,
from (k(X,Y)[Z](z), k(X),k(X,Y)) and(k(X)[Z]z), k, k(X)). We have Clearly,
dim(R1) = dim(Rz) = 1 and dim (R1) = dim,(R2) = 2. So,R; and R, are not
AF-domains. By Theorer.7, dim(R; ® R,) = 4. Now, notice that Wadsworth’s
formula fails here since midim(R;) + t(R2), dim(R;) + t(R1)) = 3.

A combination of Theoren3.7 and Theoren8.12allows one to compute the
Krull dimension of the tensor product for more general algebrashagn by the
next example.
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Example 3.16.Consider two pullback#; and R, of type (] issued, respectively,
from (k(X)[Y](y), k, k(X)) and(k(X,Y, Z)[T] (1), R, k(X,Y, Z)). We have, diniR;) =
1 and dim(R;) = 2. So,R; is not an AF-domain and, by Theoredr7, we obtain
dim(Ry ® R1) = 3. Moreover, dinffR,) = 2 and dim (R,) = 4. The conditions of
Theorem3.7do not hold for the pullback®&; and R,. We may, however, appeal to
Theorem3.12to get

dim(R1 ® Rp) = max{ ht(M;[4]) + dim(k ® Ry), ht(M>[2]) + dim(R; ® R1)}
=max{2+2,2+ 3}
=5

whereM; = Yk(X)[Y]y) andM; := Tk(X,Y, Z)[T] 7).

Next, we show how one can use Coroll&@jyl3to construct examples of non-
AF-domainsR where the tensor produét ® R is Jaffard.

Example 3.17.Let R be the pullback issued frofk (X, Y, Z)[T] (1), k(X,Y), k(X,Y, Z)).
Clearly R is not an AF-domain since dif®) # dim,(R). Moreover, note that
td(k(X,Y,Z) : k(X,Y)) S t(k(X,Y)). By Corollary3.13 dim(R @ R) =
dim,(R ® R) = 5. Thatis,R ® R is a Jaffard ring.
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